A REMARK ON WIENER'S GENERAL TAUBERIAN THEOREM

By H. R. PITT

1. The following theorem¹ is due to Wiener. THEOREM A. Hypothesis:²

(a) $k(x), k^*(x)$ belong to $L(-\infty, \infty)$, (b) $\int k(x)dx = \int k^*(x)dx = 1$, (c) $|s(x)| \leq C$, (d) $K(x) = \int e^{-iyx}k(y) dy \neq 0$ $(-\infty < x < \infty),$ (e) $\lim_{x\to\infty}\int k(x-y)s(y)\,dy=A.$

Conclusion:

$$\lim_{x\to\infty}\int k^*(x-y)s(y)\,dy\,=\,A.$$

Our object here is to determine extra conditions on k(x) and $k^*(x)$ under which condition (c) may be replaced by the one-sided condition

$$s(x) \geq -C$$

(To show that Theorem A fails with this weaker condition, we take $s(x) = e^{\sigma x}$ $(\sigma > 0)$ and suppose that k(x), $k(x)e^{-\sigma x}$ belong to L and $\int k(x)e^{-\sigma x}dx = 0.$ The result may be stated as follows.

THEOREM. Hypothesis:

- (a) $k(x) \ge 0$, k(x) belongs to $L(-\infty, \infty)$, $\int k(x)dx = 1$,
- (b) $k^*(x)$ is continuous almost everywhere and

$$\sum_{n=-\infty}^{\infty} \overline{\operatorname{bd}}_{n\leq x< n+1} |k^*(x)| < \infty, \qquad \int k^*(x) dx = 1,$$

(c)
$$s(x) \ge -C$$
,
(d) $K(x) = \int e^{-iyx}$

$$K(x) = \int e^{-iyx} k(y) dy \neq 0 \qquad (-\infty < x < \infty),$$

Received May 12, 1938.

¹ N. Wiener, Tauberian theorems, Annals of Mathematics, vol. 33(1932), pp. 1-100. The theorem stated here is Wiener's Theorem VIII.

² Integrals in which limits are not specified are over the range $(-\infty, \infty)$.