THE JUMP OF A FUNCTION DETERMINED BY ITS FOURIER COEFFICIENTS

By Otto Szász

1. Let $f(x)$ be integrable L in the interval $(-\pi, \pi)$ and have period 2π, and let its Fourier series be

$$
f(x) \sim \frac{1}{2} a_{0}+\sum_{\nu=1}^{\infty}\left(a_{\nu} \cos \nu x+b_{\nu} \sin \nu x\right)
$$

where

$$
\begin{equation*}
2 c_{\nu}=a_{\nu}-i b_{\nu}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) e^{-i \nu t} d t \quad(\nu=0,1,2, \ldots) . \tag{1}
\end{equation*}
$$

We shall also use

$$
\begin{equation*}
s_{n}(x)=\frac{a_{0}}{2}+\sum_{1}^{n}\left(a_{\nu} \cos \nu x+b_{\nu} \sin \nu x\right) \equiv \sum_{0}^{n} A_{\nu}(x), \tag{2}
\end{equation*}
$$

$$
\bar{s}_{n}(x)=\sum_{1}^{n}\left(b_{\nu} \cos \nu x-a_{\nu} \sin \nu x\right) \equiv \sum_{1}^{n} \bar{A}_{\nu}(x) .
$$

$\bar{s}_{n}(x)$ is the trigonometric polynomial conjugate to $s_{n}(x)$. It is well known that the arithmetic means

$$
\begin{align*}
& \sigma_{n}(x)=\frac{s_{0}+s_{1}+\cdots+s_{n-1}}{n}=\frac{1}{n} \sum_{0}^{n}(n-\nu) A_{\nu} \\
&=\frac{1}{2 n \pi} \int_{-\pi}^{\pi} f(t)\left(\frac{\sin \frac{1}{2} n(t-x)}{\sin \frac{1}{2}(t-x)}\right)^{2} d t \tag{3}
\end{align*}
$$

converge to $\frac{1}{2}\{f(x+0)+f(x-0)\}$, whenever this expression exists. ${ }^{1}$ We are concerned here with the determination of the jump: $D(x)=f(x+0)-f(x-0)$.

Received January 28, 1938; presented to the American Mathematical Society, February 26, 1938.
${ }^{1}$ This is Fejér's classical theorem; it was generalized by Lebesgue, who proved $\sigma_{n}(x) \rightarrow f(x)$ whenever

$$
\frac{1}{h} \int_{0}^{h}|f(x+t)+f(x-t)-2 f(x)| d t \rightarrow 0 \quad \text { as } h \rightarrow 0
$$

An extension of this result is [3, $£ 5 ; 6 ; 4]$:

$$
\int_{0}^{h}|\varphi(t)| d t=O(h) \quad \text { and } \quad \int_{0}^{h} \varphi(t) d t=o(h)
$$

where $\varphi(t)=f(x+t)+f(x-t)-2 f(x)$, imply $\sigma_{n}(x) \rightarrow f(x)$.

