DEGREE OF APPROXIMATION BY POLYNOMIALS IN z AND 1/z

By W. E. Sewell

1. Introduction. A polynomial of degree n in z and 1/z is a function of the form

$$(1.10) r_n(z) = a_{-n}z^{-n} + a_{-n+1}z^{-n+1} + \cdots + a_{-1}z^{-1} + a_0 + \cdots + a_nz^n;$$

we do not assume a_{-n} or a_n different from zero. Riesz¹ has shown that $|r_n(z)| \leq M$ on C: |z| = 1 implies $|r'_n(z)| \leq Mn$, |z| = 1. In this paper we extend this result to various types of Jordan curves (see §2) for a generalized derivative (see §3) of an arbitrary positive order α . In fact, we prove that if C is a Jordan curve containing the origin in its interior, then $|r_n(z)| \leq M$, for z on C, implies² $|r_n^{\alpha}(z)| \leq MK(\alpha, C)n^{\alpha u}, \alpha > 0$, $1 \leq u \leq 2$, where K is a constant depending only on α and C, and u is a constant depending only on C.

Also let f(z) be defined on C and suppose $|f(z) - r_n(z)| \leq \epsilon_n$, z on C $(n = 1, 2, \cdots)$. If f(z) is continuous on C, there exists³ for each n a polynomial $r_n(z)$ such that ϵ_n approaches zero as n becomes infinite. Here we study the relation between ϵ_n and the continuity properties of f(z) on C. For an analytic Jordan curve C (see §4) the method consists in mapping the interior of C conformally on |w| < 1 and applying results on trigonometric approximation due to de la Vallée Poussin⁴ and Jackson.⁵ We prove, for example, that, for C an analytic Jordan curve, the existence of $r_n(z)$ $(n = 1, 2, \cdots)$ such that $|f(z) - r_n(z)| \leq Mn^{-\alpha}$, z on C, $0 < \alpha < 1$, α and M independent of n and z, implies that f(z) satisfies a Lipschitz condition⁶ of order α on C, and, conversely, f(z) satisfying a Lipschitz condition of order α on C implies the existence of $r_n(z) | \leq Mn^{-\alpha}$, z on C. For f(z) the boundary function of a function

Received January 26, 1938.

¹ M. Riesz, Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 23(1914), pp. 354-368.

² $f^{\alpha}(z)$ denotes the generalized derivative of order α of f(z).

³ J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, American Mathematical Society Colloquium Publications, vol. 20, 1935; see p. 38.

⁴ Ch.-J. de la Vallée Poussin, Leçons sur l'approximation des fonctions d'une variable réelle, Paris, 1919.

⁵ Dunham Jackson, *The Theory of Approximation*, American Mathematical Society Colloquium Publications, vol. 11, 1930.

⁶ The function f(z) satisfies a Lipschitz condition of order α on C if for z_1 and z_2 arbitrary points on C we have $|f(z_1) - f(z_2)| \leq L |z_1 - z_2|^{\alpha}$, where L is a constant independent of z_1 and z_2 .