CERTAIN INTEGRALS AND INFINITE SERIES INVOLVING ULTRASPHERICAL POLYNOMIALS AND BESSEL FUNCTIONS

By Hsien-yü Hsü

1. Introduction. Let $P_{n}^{(\lambda)}(x)$ denote the ultraspherical polynomials defined by the generating function $\left(1-2 x w+w^{2}\right)^{-\lambda}=\sum_{n=0}^{\infty} P_{n}^{(\lambda)}(x) w^{n}$ [cf. 6, p. 50 ; 7, p. 329; 4, p. 37]. ${ }^{1}$ The following considerations are devoted to the discussion, first, of the integral formula

$$
\begin{aligned}
D_{1}(\lambda ; l, m, n) \equiv & \int_{-1}^{1}\left(1-x^{2}\right)^{\lambda-\frac{1}{2}} P_{l}^{(\lambda)}(x) P_{m}^{(\lambda)}(x) P_{n}^{(\lambda)}(x) d x \\
= & \frac{2^{1-2 \lambda}}{\{\Gamma(\lambda)\}^{2}} \frac{\pi}{s+\lambda} \frac{\Gamma(s+2 \lambda)}{\Gamma(s+1)} \\
& \frac{\binom{s-l+\lambda-1}{s-l}\binom{s-m+\lambda-1}{s-m}\binom{s-n+\lambda-1}{s-n}}{\binom{s+\lambda-1}{s}} \text { or } 0,
\end{aligned}
$$

second, of the infinite expansion

$$
\begin{aligned}
D_{2}(\lambda ; \alpha, \beta, \gamma) \equiv & \sum_{n=0}^{\infty}(n+\lambda)\left\{\frac{\Gamma(n+1)}{\Gamma(n+2 \lambda)}\right\}^{2} P_{n}^{(\lambda)}(\cos \alpha) P_{n}^{(\lambda)}(\cos \beta) P_{n}^{(\lambda)}(\cos \gamma) \\
= & 2^{-2 \lambda} \pi\{\Gamma(\lambda)\}^{-4}\{\sin \alpha \sin \beta \sin \gamma\}^{1-2 \lambda} \\
& \left\{\sin \frac{\alpha+\beta+\gamma}{2} \sin \frac{\beta+\gamma-\alpha}{2} \sin \frac{\gamma+\alpha-\beta}{2} \sin \frac{\alpha+\beta-\gamma}{2}\right\}^{\lambda-1}
\end{aligned}
$$

third, of the integral formula

$$
\begin{equation*}
S(\nu ; a, b, c) \equiv \int_{0}^{\infty} J_{\nu}(a x) J_{\nu}(b x) J_{\nu}(c x) x^{1-\nu} d x=\frac{2^{\nu-1} \Delta^{2 \nu-1}}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\nu+\frac{1}{2}\right)(a b c)^{\nu}} \text { or } 0 . \tag{1.3}
\end{equation*}
$$

In (1.1) we have $\lambda>-\frac{1}{2}$ and the numbers l, m, n are arbitrary non-negative integers. The first of the two given values holds if $l+m+n$ is even, $l+m$ $+n=2 s$, and a triangle exists with the sides l, m, n; and the second value holds in every other case. ${ }^{2}$

In (1.2) we have $\lambda>0$ and the parameters α, β, γ are arbitrary positive
Received January 12, 1938.
${ }^{1}$ The bold face numbers refer to the bibliography at the end.
${ }^{2}$ In case $\lambda=0$ the formula needs a slight modification.

