SUMS OF n-TH POWERS IN FIELDS OF PRIME CHARACTERISTIC

By Leonard Tornheim

A consequence of Waring's theorem on the representation of integers as sums of n-th powers is that every positive rational number is expressible as a finite number of n-th powers, the number required being less than a constant depending upon n. In the present paper we obtain similar theorems for fields of prime characteristic. The results tell which quantities are expressible as sums of n-th powers and how many n-th powers are needed.
Let F be a field of characteristic p, G the multiplicative group of non-zero elements, H the subgroup of all n-th powers, L the set of all elements expressible as sums of n-th powers, and K the set of all non-zero elements of L. We first prove

Lemma 1. The set L is a field.
Evidently L is closed under addition and multiplication. If $x=\sum_{i=1}^{r} x_{i}^{n} \neq 0$, then $-x=x+\cdots+x=(p-1) x$ and $1 / x=\left[(1 / x)^{n}\right] x^{n-1}$. Thus L is a subfield of F and K is a subgroup of G containing H.

An example of a field for which $K \neq G$ is the finite field of four elements and $n=3$. Here K has only the element 1 .

Theorem 1. Let F be a finite field. Every quantity in F which is expressible as a sum of n-th powers is a sum of $n n$-th powers.

Let K_{r} be the set of all non-zero elements that are sums of $r n$-th powers; e.g., $H=K_{1}$. There exists a first subscript t for which $K_{t}=K, K_{t-1}<K$. Let $x=\sum_{i=1}^{t} x_{i}^{n}$ be in K_{t}, but not in K_{t-1}. Then $x^{\prime}=\sum_{i=1}^{t-1} x_{i}^{n}$ is in K_{t-1} but not in K_{t-2}; otherwise $x=x^{\prime}+x_{t}^{n}$ would be in K_{t-1}. Hence $K_{t-2}<K_{t-1}$. The argument is repeated for each $x^{(s)}=\sum_{i=1}^{t-s} x_{i}^{n}(s=2, \cdots, t-1)$ to prove that $K_{1}<K_{2}<\cdots<K_{t}$.

If an element $y=\sum_{i=1}^{r} y_{i}^{n}$ is in K_{r}, the coset determined by y is in K_{r}, since every element of the coset has the form $z^{n} y=\sum_{i=1}^{r}\left(z y_{i}\right)^{n}$. It follows that each K_{r}, containing an element not in K_{r-1}, contains a coset not in K_{r-1}. Hence $t \leqq d$, where d is the index of H in K. Since $K=K_{t}$, every element expressible as a sum of n-th powers is a sum of $t \leqq d n$-th powers.

It remains to prove that $d \leqq n$. Denote the index of H in G by m; then $d \leqq m$, since $K \leqq G$. The index m is equal to the number of distinct quantities

