A GENERALIZATION OF MULTIPLE SEQUENCE TRANSFORMATIONS

BY HUGH J. HAMILTON

1. Introduction and statement of purpose. It is the purpose of the present paper¹ to extend the definitions of the classes of complex multiple sequences $\{s_{k(1),k(2),\ldots,k^{(n)}}\}$ considered in H_1 so that they may have meaning for complex functionals f of l variables $x^{(1)}, x^{(2)}, \ldots, x^{(l)}$, where, for $\nu = 1, 2, \ldots, l, x^{(\nu)}$ is the general element of an aggregate $\mathfrak{E}^{(\nu)}$ of considerable generality, interpretable, in particular, either as the positive integers or as the points of a Euclidean space; and to derive, by means of the results of $H_{1,2}$, conditions on the *n*-dimensional matrix $||f_{k(1),k(2)}, \ldots, k^{(n)}||$ of complex functionals of the l variables $x^{(1)}, x^{(2)}, \cdots, x^{(l)}$, necessary and sufficient for the various sequence class-to-functional class transformations under the relation

$$F(x^{(1)}, x^{(2)}, \cdots, x^{(l)}) = \sum_{k^{(1)}, k^{(2)}, \cdots, k^{(n)} = 1}^{\infty} f_{k^{(1)}, k^{(2)}, \cdots, k^{(n)}}(x^{(1)}, x^{(2)}, \cdots, x^{(l)}) s_{k^{(1)}, k^{(2)}, \cdots, k^{(n)}}$$

analogous to the sequence class-to-sequence class transformations considered in $H_{1,2}$.

In order to clarify ideas, consider the solution of the problem: to find conditions on the linear matrix of complex functionals $||f_i||$ necessary and sufficient that $F(t) \equiv \sum_{i=1}^{\infty} f_i(t)s_i$ exist finite for each t in $(0, \infty)$ and converge to 0 as t tends to infinity, whenever $\{s_i\}$ is a null sequence of complex numbers.

Denote by S the class of non-negative, real sequences $\{t_j\}$ for which $\lim_i t_j = \infty$. Now $\lim_{t \to \infty} F(t) = 0$ if and only if $\lim_i F(t_j) = 0$ for each $\{t_j\} \in S$. Hence the desired conditions are simply that

$$(\alpha) \qquad \qquad \sum_{i=1}^{\infty} |f_i(t_i)| < B(\{t_i\}) \text{ for each } j \qquad (\text{each } \{t_i\} \in S);$$

(
$$\beta$$
) $\lim_{i} f_i(t_i) = 0$ for each i (each $\{t_i\} \in S$),

as follows from well-known theorems of the Silverman-Toeplitz type (or from $H_{1,2}$); or, more elegantly, that

Received November 29, 1937; presented to the American Mathematical Society, April 16, 1938.

¹ This paper assumes familiarity with the contents of the preceding note, Change of dimension in sequence transformations; hence also with the paper therein cited as H_1 . The paper H_1 , as revised in the note, will be referred to as $H_{1,2}$.