A COTANGENT ANALOGUE OF CONTINUED FRACTIONS

By D. H. Lehmer

The continued iteration of a rational function $f(x, y)$ of two variables provides an algorithm for the expression of a real number as a sequence of rational numbers. Thus the function

$$
\begin{equation*}
f\left(x_{1}, f\left(x_{2}, f\left(x_{3}, \cdots\right)\right)\right) \tag{1}
\end{equation*}
$$

becomes an infinite series for $f(x, y)=x+y$ and an infinite product for $f(x, y)=$ $x y$. For $f(x, y)=x+1 / y$ we obtain the regular continued fraction

$$
x_{1}+\frac{1}{x_{2}+\frac{1}{x_{3}+\cdots}}=x_{1}+\frac{1 \mid}{\mid x_{2}}+\frac{1 \mid}{\mid x_{3}}+\cdots
$$

By far the most frequently used function is $f(x, y)=x+y / c$, which gives the "power series"

$$
x_{1}+\frac{x_{2}+\frac{x_{3}+\cdots}{c}}{c}=x_{1}+\frac{x_{2}}{c}+\frac{x_{3}}{c^{2}}+\cdots,
$$

where the x 's are the coefficients, used when $c=10$ for the decimal representation of real numbers. ${ }^{1}$ The algorithm associated with $f(x, y)=x(1-y)$ has been discussed by T. A. Pierce. ${ }^{2}$

This paper is concerned with the case of

$$
f(x, y)=(x y+1) /(y-x)=\cot (\operatorname{arccot} x-\operatorname{arc} \cot y)
$$

so that (1) becomes the function

$$
\cot \left(\operatorname{arc} \cot x_{1}-\operatorname{arc} \cot x_{2}+\operatorname{arc} \cot x_{3}-\cdots\right)
$$

This function, despite its aspect, is no more transcendental than a regular continued fraction and both functions have many properties in common. Furthermore, in order to obtain sequences of rational approximations to a real number, we specialize the x 's to be integers, as in the continued fraction, and consider therefore expressions of the form

$$
\begin{equation*}
\cot \sum_{\nu=0}(-1)^{\nu} \operatorname{arccot} n_{\nu} \tag{2}
\end{equation*}
$$

Received November 24, 1937.
${ }^{1}$ This use of the function $x+y / c$ is at least 4000 years old. See Amer. Jour. of Semitic Languages and Literature, vol. 36(1920), No. 4. The Babylonians used $c=60$.
${ }^{2}$ Amer. Math. Monthly, vol. 36(1929), pp. 523-525.

