TAUBERIAN THEOREMS FOR (C, 1) SUMMABILITY

BY R. P. BOAS, JR.

Let $\sum_{n=1}^{\infty} u_n$ be an infinite series, with partial sums $s_n = u_1 + u_2 + \cdots + u_n$.¹ It is well known that the applicability of Cesàro summation to the series is limited in various ways. On the one hand, the u_n cannot be too large if the series is to be summable at all;² on the other hand, it was shown by G. H. Hardy that if the u_n are too small, the series cannot be summable without being convergent.³ The object of this note is to point out that in addition the Cesàro means of the series cannot approach a limit very rapidly unless the series is convergent. For simplicity, we restrict ourselves to (C, 1) summability; we write $\sigma_n = n^{-1}(s_1 + s_2 + \cdots + s_n)$; then the given series is summable (C, 1)to s if $\lim_{n \to \infty} \sigma_n = s$. Our theorem is

THEOREM 1. If, as $n \to \infty$, $\sigma_n - s = o(n^{-\epsilon})$ $(0 \le \epsilon < 1)$ and $u_n < O(n^{\epsilon-1})$, then $s_n \to s$; if $\sigma_n - s = O(n^{-\epsilon})$ $(0 < \epsilon \le 1)$ and $u_n < o(n^{\epsilon-1})$, then $s_n \to s$.

For $\epsilon = 0$, we have the known one-sided generalization of Hardy's theorem. The first part of Theorem 1 would be trivial for $\epsilon = 1$; the second part would be false for $\epsilon = 0$.

The integral analogue of Theorem 1 is

THEOREM 2. If g(t) is the derivative of its integral on every finite interval (0, x), and if, as $x \to \infty$,

$$\int_0^x (1 - x^{-1}t)g(t) \, dt - s = o(x^{-\epsilon}) \qquad (0 \le \epsilon < 1)$$

and $g(x) < O(x^{i-1})$; or if

$$\int_0^x (1 - x^{-1}t)g(t) \, dt - s = O(x^{-\epsilon}) \qquad (0 < \epsilon \le 1)$$

and $g(x) < o(x^{\epsilon-1})$; then $\int_0^\infty g(t)dt = s$. The case $\epsilon = 0$ is known.⁴

Received January 12, 1938. The author is a National Research Fellow.

¹ All numbers in this note are real.

² If the series is summable (C, r) (r > -1), $u_n = o(n^r)$ $(n \to \infty)$. See, for example, E. W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier's Series, vol. 2, 1926, p. 77.

⁸ See E. W. Hobson, op. cit., p. 81.

⁴ See E. W. Hobson, op. cit., p. 388.