CROSS-SECTIONS OF CURVES IN 3-SPACE

By Hassler Whitney

1. Introduction. We consider in this paper "regular families of curves", that is, families F of non-intersecting curves such that if two curves are suffciently close at a point, then they remain close for a "finite time"; see [3] (i.e., the third reference below), Theorem 7A. It was shown in [3] that a crosssection may always be found through an arbitrary point of the family. If the family fills a region of Euclidean 3 -space E, it is natural to suspect that any cross-section contains a cross-section which is a 2 -cell; our object here is to prove this fact. It follows (see [3], §20) that locally, a family of curves in E is equivalent to a family of straight lines. The proof is arranged so that a minimum of preliminary material is assumed. We use rather fully the methods in [1], [2], and the first half of [3], and a method of proof in [4].
2. Two types of homology. We relate the two types of homology used in [1] and [2], and give some simple properties of the second type. For a curve ($=$ simple closed curve) J in a closed set, $J \sim 0$ was defined in [2]. For J in a general set, say $J \sim 0$ if it is ~ 0 in some bounded closed subset. Call a chain of a subdivision from some fixed sequence of simplicial subdivisions (as in [1]) a polygonal chain. Say two curves are equivalent in a set G if, using fixed parametrizations $f_{0}(\theta)$ and $f_{1}(\theta)$ for them, one can be deformed into the other in G, i.e., $f_{t}(\theta)(0 \leqq t \leqq 1)$ exists and is continuous.

Lemma 1. If J and J^{\prime} are equivalent in G, then $J \sim 0$ in G if and only if $J^{\prime} \sim 0$ in G.

This is easily seen, using [2], Lemma I, if we subdivide the θ-circle and the t-segment, and consider triangles of the forms

$$
f_{t_{i}}\left(\theta_{j}\right) f_{t_{i+1}}\left(\theta_{j}\right) f_{t_{i}}\left(\theta_{j+1}\right), \quad f_{t_{i+1}}\left(\theta_{j}\right) f_{t_{i}}\left(\theta_{j+1}\right) f_{t_{i+1}}\left(\theta_{j+1}\right)
$$

Lemma 2. If $J \sim 0$ in A, and A is deformed into A^{\prime}, leaving J fixed, then $J \sim 0$ in A^{\prime}.

For if $L \rightarrow K, K$ a 1 -cycle in J, we need merely consider the deformed L.
Lemma 3. Let J be equivalent to a polygonal J^{\prime} in an open set G. Then $J \sim 0$ in G if and only if J^{\prime} bounds a polygonal chain in G.

By Lemma $1, J \sim 0$ if and only if $J^{\prime} \sim 0$. Suppose J^{\prime} bounds a polygonal chain. Then, using a fine enough subdivision and [2], Lemma I, we see that $J^{\prime} \sim 0$. Suppose $J^{\prime} \sim 0$; say $J^{\prime} \sim 0$ in the closed subset A of G. Set $\epsilon=$

Received December 3, 1937; presented to the American Mathematical Society, October 29. 1932. The theorem was first proved when the author was a National Research Fellow.

