LINEAR FUNCTIONALS SATISFYING PRESCRIBED CONDITIONS

By Ralph Palmer Agnew

1. Introduction. A function (or transformation) $q \equiv q(x)$ with domain and range in linear spaces is called linear if

$$
\begin{equation*}
q(a x+b y)=a q(x)+b q(y) \quad(a, b \in R ; x, y \in E) \tag{1.01}
\end{equation*}
$$

where E is the domain of q and R is the set of real numbers. If the range of $q(x)$ is in R, then $q(x)$ is called a functional. Using notation of Banach ${ }^{1}$ we call a functional $p(x)$ a p-function if

$$
\begin{align*}
p(t x) & =t p(x) & (t \geqq 0 ; x \in E), \tag{1.02}\\
p(x+y) & \leqq p(x)+p(y) & (x, y \in E) .
\end{align*}
$$

We denote the class of linear functionals $f \equiv f(x)$ by F and the class of p-functions by P.

A theorem of Banach (loc. cit., p. 29) of which we make repeated use is
Theorem 1.1. If $p \in P$, then there exists $f \in F$ with

$$
\begin{equation*}
f(x) \leqq p(x) \tag{1.11}
\end{equation*}
$$

$$
(x \in E)
$$

Since each linear functional f is also a p-function, i.e., $F \subset P$, the following theorem, of which we shall make explicit and implicit use, is trivial.

Theorem 1.2. If $f \in F$, then there exists $p \in P$ with $f(x) \leqq p(x)$ for all $x \in E$.
Let $p_{0} \in P$ and a set Ψ of pairs $\{x, y\}$ of elements $x, y \in E$ be prescribed. One problem in which we shall be interested is that of determining whether there exist linear functionals $f \in F$ possessing the properties

$$
\begin{array}{rr}
f(x) \leqq p_{0}(x) & (x \in E) \\
f(y)=f(x) & (\{x, y\} \in \Psi) . \tag{1.22}
\end{array}
$$

We assume Ψ has the property that if $\{x, y\} \in \Psi$ then $\{y, x\} \in \Psi$, and that $\{x, x\} \in \Psi$ for each $x \in E$; this assumption is convenient and entails no loss of generality.

We shall say that a p-function $p \equiv p(x)$ enforces a specified property (or set of properties) if every $f \in F$, with $f(x) \leqq p(x)$ for all $x \epsilon E$, must possess the specified property (or set of properties).

For example, a slight amplification of work of Banach (loc. cit., p. 33) shows

Received September 27, 1937; presented to the American Mathematical Society, October 30, 1937.
${ }^{1}$ S. Banach, Théorie des Opérations Linéaires, Warsaw, 1932, p. 28.

