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The problem of incorporating into a single system the various quotient-groups
associated with a given group G has recently received attention: one finds, for
example, a solution in the papers of Ore on structures. As Ore points out,
however, the wide applicability of his results is attained "by the elimination of
the elements from the algebraic theories". It is the purpose of this paper to
present a solution in which the elements of the quotient-groups occupy the
center of interest. We shall incorporate the elements of certain quotient-groups
associated with G into a multiplicative system, which we call the half-group
belonging to G. It is not difficult to see that this "multiplicative system" can
never be a group if, as seems reasonable, we require that two elements belonging
to distinct quotient-groups have a unique product.

I. The half-group P (G)
Let G denote any group containing more than one element, and let ) denote

set of operators for G, each operator effecting a proper automorphism of G.
Of the set we require that it contain operators effecting each of the inner
isomorphisms of G. Let H(G) denote the set of all subgroups in G which
individually admit each operator of . Evidently H(G) is either the set of all
normal subgroups of G or a subset of this set. In any case, H(G) will contain
both the identity subgroup E and the group G itself. The following are familiar
results: if Ha and Hb are any two members of H(G), then the complexes
and HHa are identical and each is equal to the union {Ha, H}; both the union
and the cross-cut [Ha, H] are contained in H(G).
Now each H in H(G) gives rise to the quotient-group F G/H. Let Q(G)

denote the set of distinct quotient-groups associated with the set H(G), two
quotient-groups Fa and Fb being regarded as distinct if, and only if, Ha Hb.
We suppose, furthermore, that two distinct quotient-groups have no element in
common. Let 2 denote the set of all group-elements in Q(G); i.e., the logical
sum of the sets of elements in Pa, Fb, etc. We wish to define for the elements of
2 a "multiplication" which shall have the following characteristics"

(la) the set 2 is closed under multiplication;
(lb) multiplication is associative for any three elements of Z;
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If G is abelian, the set may be void. Throughout this article we designate simple
and multiple "isomorphisms" by the terms isomorphism and homomorphism, respectively.
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