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1. Introduction. A well known theorem of Hardy nd Littlewood states, in
form in which it is often quoted, that if f(x) is of class C on (0, ), nd if, as
x , f(x) o(1) nd f"(x) O(x-2), then f’(x) o(x-). It is special
cse of theorem in which the powers of x in the order relations re replaced
by more general functions; nd this in turn cn be used to establish n extended
theorem where from the order of f(x) nd of f"(x) (n >- 2) one deduces the
orders of the intermediate derivatives. Now, if we think of he hypothesis
on f"(x) in the original theorem s "x2f"(x) 0(1)", it is hypothesis on the
order of the function resulting from pplying certain linear differential operator
to f(x). The principal result of this note is the corresponding theorem when

d
the operator x is replaced by certain more general, n-th order, linear

operator, L; from the order of L[f(x)] nd of f(x), the order of

f()(x) (k 1, 2, n 1)

can be deduced. This result, and a preliminary theorem, overlap the results
of Hardy and Littlewood, but neither include them nor are included by them.
The full statement of our main theorem is somewhat complex; to illustrate it
as simply as possible, a special case, sufficient for many applications, will be
stated here.

Let

(1.1) L[f(x)] Axf(i) (x)
i,O

where the A are constants, A, O. Let f(x) be of class C on (0, ), and sup-
pose that as x -- , L[f(x)] < 0(1). If f(x) 0(1), then f()(x) O(x-);
if f(x) o(1), then f()(x) o(x-) (k 1, 2,..., n 1).
Examples of operators L[f(x)] which have the form (1.1) are x"f()(x); the

operator

(__X)k-1 d2k-1L,,[f(x)]
k! (k 2)! dx- [xf(x)] (k >= 2)
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