ASYMPTOTIC RELATIONS FOR DERIVATIVES
By R. P. Boas, Jr.

1. Introduction. A well known theorem of Hardy and Littlewood states, in a
form in which it is often quoted, that if f(z) is of class C* on (0, =), and if, as
z — o, f(x) = o(1) and f”(z) = O(z™7), then f’(z) = o(z™"). It is a special
case of a theorem in which the powers of x in the order relations are replaced
by more general functions; and this in turn can be used to establish an extended
theorem where from the order of f(z) and of f™(z) (n = 2) one deduces the
orders of the intermediate derivatives." Now, if we think of the hypothesis
on f”(z) in the original theorem as “2’f"'(z) = O(1)”, it is a hypothesis on the
order of the function resulting from applying a certain linear differential operator
to f(z). The prinzcipal result of this note is the corresponding theorermi when

the operator z* 4 is replaced by a certain more general, n-th order, linear

dx?
operator, L; from the order of L{f(x)] and of f(x), the order of
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can be deduced. This result, and a preliminary theorem, overlap the results
of Hardy and Littlewood, but neither include them nor are included by them.
The full statement of our main theorem is somewhat complex; to illustrate it
as simply as possible, a special case, sufficient for many applications, will be
stated here.

Let
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where the A; are constants, A, # 0. Let f(x) be of class C" on (0, »), and sup-
pose that as © — », L{f(x)] < 0Q1). If f(z) = O(1), then f®(x) = 0@=™%);
if fx) = o(1), thenf(k>(x) = O(x_k) k=12-.--,n—1).

Examples of operators L[f(x)] which have the form (1.1) are z"f‘”(z); the
operator
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