ASYMPTOTIC RELATIONS FOR DERIVATIVES

BY R. P. BOAS, JR.

1. Introduction. A well known theorem of Hardy and Littlewood states, in a form in which it is often quoted, that if f(x) is of class C^2 on $(0, \infty)$, and if, as $x \to \infty$, f(x) = o(1) and $f''(x) = O(x^{-2})$, then $f'(x) = o(x^{-1})$. It is a special case of a theorem in which the powers of x in the order relations are replaced by more general functions; and this in turn can be used to establish an extended theorem where from the order of f(x) and of $f^{(n)}(x)$ $(n \ge 2)$ one deduces the orders of the intermediate derivatives.¹ Now, if we think of the hypothesis on f''(x) in the original theorem as " $x^2 f''(x) = O(1)$ ", it is a hypothesis on the order of the function resulting from applying a certain linear differential operator to f(x). The principal result of this note is the corresponding theorem when the operator $x^2 \frac{d^2}{dx^2}$ is replaced by a certain more general, *n*-th order, linear operator, L; from the order of L[f(x)] and of f(x), the order of

$$f^{(k)}(x)$$
 $(k = 1, 2, \dots, n - 1)$

can be deduced. This result, and a preliminary theorem, overlap the results of Hardy and Littlewood, but neither include them nor are included by them. The full statement of our main theorem is somewhat complex; to illustrate it as simply as possible, a special case, sufficient for many applications, will be stated here.

Let

(1.1)
$$L[f(x)] = \sum_{i=0}^{n} A_{i} x^{i} f^{(i)}(x),$$

where the A_i are constants, $A_n \neq 0$. Let f(x) be of class C^n on $(0, \infty)$, and suppose that as $x \to \infty$, L[f(x)] < O(1). If f(x) = O(1), then $f^{(k)}(x) = O(x^{-k})$; if f(x) = o(1), then $f^{(k)}(x) = o(x^{-k})$ $(k = 1, 2, \dots, n-1)$.

Examples of operators L[f(x)] which have the form (1.1) are $x^n f^{(n)}(x)$; the operator

$$L_{k,x}[f(x)] = \frac{(-x)^{k-1}}{k! (k-2)!} \frac{d^{2k-1}}{dx^{2k-1}} [x^k f(x)] \qquad (k \ge 2)$$

Received June 23, 1937; presented to the American Mathematical Society, September, 1937.

¹G. H. Hardy and J. E. Littlewood, Contributions to the arithmetic theory of series, Proceedings of the London Mathematical Society, (2), vol. 11 (1913), pp. 411-478; 417 ff.

Reference should also be made to E. Landau, Über einen Satz von Herrn Esclangon, Mathematische Annalen, vol. 102 (1929-30), pp. 177-188. Landau considers more general differential operators than we do, but his results are less general in other respects.