# A NOTE ON NON-ASSOCIATIVE ALGEBRAS 

By N. Jacobson

It is the purpose of this note to obtain relations between an arbitrary algebra $\mathfrak{\Re}$ (not necessarily associative) and an algebra $\mathfrak{N}$ (necessarily associative) of linear transformations determined by $\mathfrak{R}$. If $\mathfrak{A}$ is simple, the centrum $\mathbb{C}$ of $\mathfrak{A}$ is an algebraic field and $\Re$ may be regarded as an algebra over $\mathfrak{C}$. When this is done $\Re$ becomes a normal simple algebra, i.e., remains simple when this field is extended to its algebraic closure. A field having this property for algebras of characteristic 0 has been defined previously but less directly by Landherr. ${ }^{1}$ Some of our results have been announced for Lie algebras of characteristic 0 by Albert. ${ }^{2}$

1. Let $\Re$ be an arbitrary algebra (not necessarily associative or commutative) with a finite basis over a commutative field $\Phi ; \Re$ is a finite dimensional vector space over $\Phi$ in which there is defined a composition $x y$ of pairs of elements $x, y$ such that

$$
\begin{array}{rlr}
(x+y) z=x z+y z, & z(x+y)=z x+z y, & \\
(x y) \alpha=x(y \alpha)=(x \alpha) y, & \alpha \in \Phi . \tag{2}
\end{array}
$$

The mapping $x \rightarrow x a \equiv x A_{r}$ of $\Re$ on itself will be called the right multiplication determined by $a$. Equations (1) and (2) show that $A_{r}$ is a linear transformation in the vector space $\mathfrak{\Re}$. Similarly we define the left multiplication determined by $a$ as $x \rightarrow a x \equiv x A_{l}$. Let $\mathfrak{A}$ be the enveloping algebra of the left and right multiplications of $\Re$, i.e., the smallest algebra of linear transformations in $\Re$ containing all the left and right multiplications. The elements of $\mathfrak{N}$ are sums of terms of the type $A_{1 i_{1}} \cdots A_{s i_{s}}\left(i_{\alpha}=r\right.$ or $\left.l\right)$ where $A_{j i_{j}}$ is a multiplication determined by $a_{j}$. We shall therefore denote an arbitrary element of $\mathfrak{A}$ by $\Sigma A_{1 i_{1}} \cdots A_{s i_{s}}$ (not summed on $i_{a}!$ ). Thus $\mathfrak{N}$ may also be defined as the smallest ring of linear transformations containing all the multiplications.

If $a_{1}, \cdots, a_{n}$ is a basis for $\mathfrak{R}$ over $\Phi$ and $A$ is a linear transformation in this vector space, then $A$ is completely determined by the matrix ( $\alpha_{i j}$ ) such that $a_{i} A=\Sigma a_{i} \alpha_{i j}$. The correspondence between $A$ and the matrix ( $\alpha_{i j}$ ) determines, as is well known, a reciprocal isomorphism between the ring of all linear transformations in $\mathfrak{R}$ over $\Phi$ and the matrix ring $\Phi_{n}$ of all $n$-rowed square matrices

Received February 11, 1937; presented to the American Mathematical Society, April 9, 1937. The author is a National Research Fellow.
${ }^{1}$ W. Landherr, Über einfache Liesche Ringe, Hamb. Abhandlungen, vol. 11 (1935), pp. 41-64.
${ }^{2}$ Bull. Am. Math. Soc., vol. 41 (1935), p. 344.

