SUMS OF VALUES OF A POLYNOMIAL MULTIPLIED BY CONSTANTS

By Kenneth S. Ghent

1. Introduction. We seek conditions on the integer s, on the sets of positive integers $\left(a_{1}, \cdots, a_{s}\right)$ and on the coefficients of a polynomial $P(x)$ for which the Diophantine equation

$$
\begin{equation*}
n=\sum_{\nu=1}^{s} a_{\nu} P\left(h_{\nu}\right) \tag{1}
\end{equation*}
$$

is solvable in integers $h_{v} \geqq 0$ for every integer n sufficiently large. By n sufficiently large we mean that n is greater than an existing constant b_{1} which depends only on s, a_{1}, \cdots, a_{s} and on the degree k and the coefficients of the polynomial $P(x)$. We consider two cases of the polynomial $P(x)$:

$$
\begin{equation*}
P(x)=a\left(x^{3}-x\right) / 6+b\left(x^{2}-x\right) / 2+c x+d \tag{2}
\end{equation*}
$$

where $a>0$ and a, b, c and d are integers; ${ }^{1}$

$$
\begin{align*}
P(x)=a x(x+1)(x+2)(x+3) / 24+b x(x & +1)(x+2) / 6 \tag{3}\\
& +c x(x+1) / 2+d x+e
\end{align*}
$$

where $a>0$ and a, b, c, d and e are integers. ${ }^{2}$
For $a_{1}=\cdots=a_{s}=1$, the problem is the classical Waring problem for third and fourth degree polynomials. If $P(x)$ in (2) is such that $a \neq 4 c(\bmod 8)$ James has shown that every sufficiently large integer n is a sum of nine values of $P(x) .^{3}$ We show that for $s=9$ and for integral constants (a_{1}, \cdots, a_{s}) satisfying certain congruential conditions given later, every sufficiently large integer can be expressed in the form (1). For $P(x)$ as in (3), Miss Humphreys has given conditions which are sufficient to prove that every sufficiently large integer n is expressible as the sum of 21 values of $P(x)$. Under certain further assumptions on $P(x)$ and on the sets of positive integers (a_{1}, \cdots, a_{s}) we shall

Received June 26, 1936; in revised form, June 28, 1937.
${ }^{1}$ A cubic polynomial in x is an integer for all integers $x \geqq 0$ if and only if it is of the form (2)-R. D. James, The representation of integers as sums of values of cubic polynomials, American Journal of Mathematics, vol. 56 (1934), pp. 303-315. See also D. H. Hilbert, Über die Theorie der algebraischen Formen, Mathematische Annalen, vol. 36 (1890), pp. 511-512.
${ }^{2}$ A fourth degree polynomial in x is an integer for all integers $x \geqq 0$ if and only if is of the form (3). See M. G. Humphreys, On the Waring problem with polynomial summands, this Journal, vol. 1 (1935), pp. 361-375. The proof is accomplished by a slight modification of that of Hilbert in the paper previously cited.
${ }^{3}$ James, loc. cit.

