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Introduction.
nomials

This paper deals principally with the generalized Jacobi poly-

J,(x; a, ) =-- J,(x) (1 -I- x)-"(1 x)-a [(1 + x)+"-(1 x)+-]

(1) (-- i)n! (2n + a + 2) ’(x;a’);
.(x; a, ) (x) x Sx- + (n O, 1, 2, ...),

defined (except for constant factors) for all real a, as the polynomial solutions
of the derential equation

x)J(x) + [a (a + fl)x]J(x)
()

+ n(n + a + 1)J,(x) 0 (n 0, 1,... ).

For arbitrary a, several authors have discussed the number of real zeros of
J(x; a, ). Stieltjes [1] gave a method of finding the number of zeros in the
intervals (- , 1), (- 1, 1), (1, but he stated the result only when a, > 0.
Shibata [2] gave a table for the number of zeros when they are all rel and a,
are not negative integers or zero. Lawton [3] gave complete results for the
closed interval (-1, 1) when n is sufficiently large. The results of Hilbert [4],
Klein [5], Van Vleck [6], and Hurwitz [7] for the zeros of the hypergeometric
function may also be applied to Jacobi polynomials.
Here we find the number of zeros of J (x; a, ) inside the intervals (- , 1),

(- 1, 1), (1, and, in addition, at x 1 (from which the number of imagi-
nary zeros is easily obtained) when a, are arbitrary. The method employed is
new and other properties of J(x; a, ) are developed as well.

In case a, > 0, the J(x) form, as is known, an orthogonal system

p()J.()J()e o, p() (1 + z)"-(1 )-

(m;m, 0,1,..-).
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