ON THE ZEROS OF JACOBI POLYNOMIALS, WITH APPLICATIONS

By M. S. Webster

Introduction. This paper deals principally with the generalized Jacobi polynomials

$$
\begin{align*}
J_{n}(x ; \alpha, \beta) & \equiv J_{n}(x) \equiv(1+x)^{1-\alpha}(1-x)^{1-\beta} \frac{d^{n}}{d x^{n}}\left[(1+x)^{n+\alpha-1}(1-x)^{n+\beta-1}\right] \\
& \equiv(-1)^{n} n!\binom{2 n+\alpha+\beta-2}{n} \phi_{n}(x ; \alpha, \beta) ; \tag{1}\\
\phi_{n}(x ; \alpha, \beta) & \equiv \phi_{n}(x) \equiv x^{n}-S_{n} x^{n-1}+\cdots \quad(n=0,1,2, \cdots),
\end{align*}
$$

defined (except for constant factors) for all real α, β as the polynomial solutions of the differential equation

$$
\begin{align*}
\left(1-x^{2}\right) J_{n}^{\prime \prime}(x)+[\alpha & -\beta-(\alpha+\beta) x] J_{n}^{\prime}(x) \tag{2}\\
& +n(n+\alpha+\beta-1) J_{n}(x)=0 \quad(n=0,1, \cdots)
\end{align*}
$$

For arbitrary α, β several authors have discussed the number of real zeros of $J_{n}(x ; \alpha, \beta)$. Stieltjes [1] ${ }^{1}$ gave a method of finding the number of zeros in the intervals $(-\infty,-1),(-1,1),(1, \infty)$ but he stated the result only when $\alpha, \beta>0$. Shibata [2] gave a table for the number of zeros when they are all real and α, β are not negative integers or zero. Lawton [3] gave complete results for the closed interval $(-1,1)$ when n is sufficiently large. The results of Hilbert [4], Klein [5], Van Vleck [6], and Hurwitz [7] for the zeros of the hypergeometric function may also be applied to Jacobi polynomials.

Here we find the number of zeros of $J_{n}(x ; \alpha, \beta)$ inside the intervals $(-\infty,-1)$, $(-1,1),(1, \infty)$ and, in addition, at $x= \pm 1$ (from which the number of imaginary zeros is easily obtained) when α, β are arbitrary. The method employed is new and other properties of $J_{n}(x ; \alpha, \beta)$ are developed as well.

In case $\alpha, \beta>0$, the $J_{n}(x)$ form, as is known, an orthogonal system

$$
\begin{align*}
\int_{-1}^{1} p(x) J_{m}(x) J_{n}(x) d x=0, \quad p(x)=(1 & +x)^{\alpha-1}(1-x)^{\beta-1} \tag{3}\\
& (m \neq n ; m, n=0,1, \cdots) .
\end{align*}
$$

Received December 7, 1936; presented to the American Mathematical Society, April 20, 1935. The author wishes to express his gratitude to Professor J. Shohat for his valuable suggestions.
${ }^{1}$ The numbers in brackets refer to the bibliography at the end of the paper.

