ON THE ZEROS OF JACOBI POLYNOMIALS, WITH APPLICATIONS

By M. S. WEBSTER

Introduction. This paper deals principally with the generalized Jacobi polynomials

$$J_{n}(x; \alpha, \beta) \equiv J_{n}(x) \equiv (1+x)^{1-\alpha}(1-x)^{1-\beta} \frac{d^{n}}{dx^{n}} [(1+x)^{n+\alpha-1}(1-x)^{n+\beta-1}]$$

$$(1) \qquad \equiv (-1)^{n} n! \binom{2n+\alpha+\beta-2}{n} \phi_{n}(x; \alpha, \beta);$$

$$\phi_{n}(x; \alpha, \beta) \equiv \phi_{n}(x) \equiv x^{n} - S_{n}x^{n-1} + \cdots \qquad (n = 0, 1, 2, \cdots),$$

defined (except for constant factors) for all real α , β as the polynomial solutions of the differential equation

(2)
$$(1 - x^2)J''_n(x) + [\alpha - \beta - (\alpha + \beta)x]J'_n(x) \\ + n(n + \alpha + \beta - 1)J_n(x) = 0 \qquad (n = 0, 1, \cdots).$$

For arbitrary α , β several authors have discussed the number of real zeros of $J_n(x; \alpha, \beta)$. Stieltjes $[1]^1$ gave a method of finding the number of zeros in the intervals $(-\infty, -1), (-1, 1), (1, \infty)$ but he stated the result only when $\alpha, \beta > 0$. Shibata [2] gave a table for the number of zeros when they are all real and α, β are not negative integers or zero. Lawton [3] gave complete results for the closed interval (-1, 1) when n is sufficiently large. The results of Hilbert [4], Klein [5], Van Vleck [6], and Hurwitz [7] for the zeros of the hypergeometric function may also be applied to Jacobi polynomials.

Here we find the number of zeros of $J_n(x; \alpha, \beta)$ inside the intervals $(-\infty, -1)$, (-1, 1), $(1, \infty)$ and, in addition, at $x = \pm 1$ (from which the number of imaginary zeros is easily obtained) when α , β are arbitrary. The method employed is new and other properties of $J_n(x; \alpha, \beta)$ are developed as well.

In case α , $\beta > 0$, the $J_n(x)$ form, as is known, an orthogonal system

(3)
$$\int_{-1}^{1} p(x) J_m(x) J_n(x) dx = 0, \qquad p(x) = (1+x)^{\alpha-1} (1-x)^{\beta-1} (m \neq n; m, n = 0, 1, \cdots).$$

Received December 7, 1936; presented to the American Mathematical Society, April 20, 1935. The author wishes to express his gratitude to Professor J. Shohat for his valuable suggestions.

¹ The numbers in brackets refer to the bibliography at the end of the paper.