NOTE ON THE SIMULTANEOUS ORTHOGONALITY OF HARMONIC POLYNOMIALS ON SEVERAL CURVES

By J. L. Walsh and G. M. Merriman

1. In the plane of the complex variable $z=x+i y$, the polynomials $1, z, z^{2}, \cdots$ are mutually orthogonal, not merely on the circumference $|z|=1$, but also on every circumference $|z|=R$, in the sense that

$$
\int_{|z|=R} z^{k} z^{l}|d z|=0
$$

$$
k \neq l .
$$

The general problem of the existence of sets of polynomials in z which are simultaneously orthogonal, with respect to suitable norm functions, on each of several curves in the z-plane has been studied only recently. Let us say that the set $p_{k}(z)$ of polynomials in z is canonical on a rectifiable Jordan curve C with respect to the norm function $n(z)$ provided the set $p_{k}(z)$ is found by orthogonalization on C of the set $1, z, z^{2}, \cdots$ with respect to the positive continuous norm function $n(z)$, and provided the coefficient of z^{k} in $p_{k}(z)$ is chosen positive. Walsh established ${ }^{1}$ the orthogonality with respect to a suitable norm function of certain Tchebycheff polynomials on all ellipses of a given confocal family. Szegö ${ }^{2}$ and Walsh ${ }^{3}$ showed independently and by widely different methods the fact that if the same set of polynomials $p_{k}(z)$ is canonical on two distinct curves C and C^{\prime}, then either C^{\prime} is a curve C_{R} or C is a curve $C_{R}^{\prime} ;{ }^{4}$ Szegö requires analyticity of C and C^{\prime}. [Let C be an arbitrary Jordan curve in the z-plane, and let the function $z=\psi(w)$ map the exterior of C onto the exterior of the unit circle $|w|=1$ in the w-plane so that the points at infinity in the two planes correspond to each other. We denote generically by C_{R} the image (Kreisbild) in the z-plane of the circle $|w|=R>1$ under this transformation.] Moreover, Szego ${ }^{5}$ exhibited all sets of polynomials in z, each set canonical simultaneously on all C_{R} of a given family, $1<R<\infty$. ${ }^{6}$ The general problem of the existence of sets of polynomials canonical simultaneously on only two curves

[^0]
[^0]: Received October 20, 1936; presented to the American Mathematical Society, December 1936 .
 ${ }^{1}$ Bull. Am. Math. Soc., vol. 40 (1934), pp. 84-88. Also Interpolation and Approximation, New York, 1935, p. 134, Theorem 12.
 ${ }^{2}$ Trans. Am. Math. Soc., vol. 37 (1935), pp. 196-206.
 ${ }^{3}$ Interpolation and Approximation, p. 134, Theorem 11.
 ${ }^{4}$ The analogous result for harmonic polynomials follows directly by the methods of Walsh (loc. cit. and Trans. Am. Math. Soc., vol. 33 (1931), pp. 370-388, especially p. 385).
 ${ }^{5}$ Loc. cit.
 ${ }^{6}$ These sets are enumerated in §2, below.

