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1. Introduction. Let ?I be a rational generalized quaternion algebra with
the fundamental number d. A set of integral elements in , or more briefly
an integral set, is one with certain properties R, C, U, M as defined by Dick-
son. Two integral sets are said to be equivalent, or of the same type, if there
is a one-to-one correspondence between the elements of the sets which is preserved
under addition and multiplication. All the sets equivalent to a given set will
be said to form a class. Two integral sets, @ and @1, belong to the same class
if and only if there is
By a result due to Artin, the number H of classes of integral sets in is equal

to the number of classes of equivalent right ideals in an arbitrarily chosen inte-
gral set @, of , Artin’s definition of equivalent ideals being broader than the
usual definition.
The principal purpose of this paper is to show that there is a one-to-one cor-

respondence between the classes of integral sets in and certain classes of
ternary quadratic forms. These classes of forms are the non-negative classes
or the improperly primitive non-negative classes in a certain genus G, according
as d is even or odd. G is uniquely determined by d. Ifd 0, byaknown
theorem there is a single class of forms in G and therefore H 1.
We shall also determine a relatively simple basis of an arbitrarily chosen

integral set in

2. A normal basis of an integral set. If k0, ,3 form a basis of an integral
set @, then hk. ZkC’khk (i, j 0, -.’, 3). A set @1 is equivalent to @ if
and only if it has a basis 0, "’, 3 such that kcikk (i,j 0,..., 3).
The following theorem is a consequence of certain results due to Brandt.
THEOREM 1. Let 71 be a generalized quaternion algebra with the fundamental
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