THE MAPS OF AN 7-COMPLEX INTO AN 7n-SPHERE
By Hassuer WHITNEY

1. Introduction. The classes of maps of an n-complex into an n-sphere
were classified by H. Hopf' in 1932. Recently, W. Hurewicz’* has extended
the theorem by replacing the n-sphere by much more general spaces. Freu-
denthal’ and Steenrod* have noted that the theorem and proof are simplified
by using real numbers reduced mod 1 in place of integers as coefficients in the
chains considered. We shall give here a statement of the theorem which seems
the most natural; the proof is quite simple. As in the original proof by Hopf,
we shall base it on a more general extension theorem.

The fundamental tool of the paper is the relation of “coboundary’”’;® it has
come into prominence in the last few years.

In later papers we shall classify the maps of a 3-complex into a 2-sphere and
of an n-complex into projective n-space.

I. Elementary facts

2. Boundaries and coboundaries. Let K be a complex, with oriented cells ¢}
(not necessarily simplicial) of dimension r, r =0, ... ,n. Letd;; =1, —1,0r0
according as o7 is positively, negatively, or not at all, on the boundary of o}.
An r-chain C” is a linear form Za,o;, the a; being integers (or elements of an
abelian group). The boundary (or contraboundary) and coboundary of C™ are
defined by

2.1) 6(2 aia'z) = Z o dia7 5(2 anr;) = Z o 6:?_10;4_1.
i ] T t,]

As in the ordinary theory, we say C" is a cocycle if its coboundary vanishes,
and C" is cohomologous to D", C" — D, if C" — D" is a coboundary. The relation
86C" = 0 (easily proved; equivalent to 99C" = 0) says that every coboundary
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