THE MAPS OF AN *n*-COMPLEX INTO AN *n*-SPHERE

BY HASSLER WHITNEY

1. Introduction. The classes of maps of an *n*-complex into an *n*-sphere were classified by H. Hopf¹ in 1932. Recently, W. Hurewicz² has extended the theorem by replacing the *n*-sphere by much more general spaces. Freudenthal³ and Steenrod⁴ have noted that the theorem and proof are simplified by using real numbers reduced mod 1 in place of integers as coefficients in the chains considered. We shall give here a statement of the theorem which seems the most natural; the proof is quite simple. As in the original proof by Hopf, we shall base it on a more general extension theorem.

The fundamental tool of the paper is the relation of "coboundary";⁵ it has come into prominence in the last few years.

In later papers we shall classify the maps of a 3-complex into a 2-sphere and of an n-complex into projective n-space.

I. Elementary facts

2. Boundaries and coboundaries. Let K be a complex, with oriented cells σ_i^r (not necessarily simplicial) of dimension $r, r = 0, \dots, n$. Let $\partial_{ij}^r = 1, -1$, or 0 according as σ_i^{r-1} is positively, negatively, or not at all, on the boundary of σ_j^r . An r-chain C^r is a linear form $\sum \alpha_i \sigma_i^r$, the α_i being integers (or elements of an abelian group). The boundary (or contraboundary) and coboundary of C^r are defined by

(2.1)
$$\partial \left(\sum_{i} \alpha_{i} \sigma_{i}^{r}\right) = \sum_{i,j} \alpha_{i} \partial_{ji}^{r} \sigma_{j}^{r-1}, \qquad \delta \left(\sum_{i} \alpha_{i} \sigma_{i}^{r}\right) = \sum_{i,j} \alpha_{i} \partial_{ij}^{r+1} \sigma_{j}^{r+1}.$$

As in the ordinary theory, we say C^r is a *cocycle* if its coboundary vanishes, and C^r is *cohomologous* to D^r , $C^r \sim D^r$, if $C^r - D^r$ is a coboundary. The relation $\delta \delta C^r = 0$ (easily proved; equivalent to $\partial \partial C^r = 0$) says that every coboundary

Received December 1, 1936; presented to the International Topological Conference in Moscow, September 1935, and to the American Mathematical Society, October 1935.

¹ H. Hopf, Commentarii Mathematici Helvetici, vol. 5 (1932), pp. 39-54. See also Alexandroff-Hopf, *Topologie* I, Ch. XIII. A recent proof has been given by S. Lefschetz, Fund. Math., vol. 27 (1936), pp. 94-115. In Lemma 3 he gives a new proof of the theorem of the preceding paper; the author does not understand how the final map is made simplicial.

² W. Hurewicz, Proc. Kön. Akad. Wet. Amsterdam, vols. 38-39 (1935-36); in particular, vol. 39, pp. 117-126. The full paper will appear in the Annals of Math.

³ H. Freudenthal, Compositio Math., vol. 2 (1935), footnote 8.

⁴ Unpublished.

⁵ This is discussed briefly in §2. For further details, see our paper On matrices of integers, pp. 35-45 of this volume of this Journal. We refer to this paper as I. The relation of Theorems 2, 3 and 4 to the theorems as stated by Hopf are made apparent by the theorems in I. The present paper is independent of I.