SUMS OF SQUARES OF POLYNOMIALS

By Leonard Carlitz

1. Introduction. In this note we determine the number of representations of 0 as the sum of an arbitrary number of squares of polynomials in a single indeterminate with coefficients in a fixed Galois field $G F\left(p^{n}\right), p>2$. More accurately, if $\alpha_{1}, \cdots, \alpha_{t}$ are t non-zero elements of $G F\left(p^{n}\right), \alpha_{1}+\cdots+\alpha_{t}=0$, we determine the number of solutions of

$$
\begin{equation*}
0=\alpha_{1} Y_{1}^{2}+\cdots+\alpha_{t} Y_{t}^{2} \tag{1.1}
\end{equation*}
$$

in primary ${ }^{1}$ polynomials Y_{j} each of degree k, an assigned positive integer. We denote the number of solutions of (1.1) by

$$
N_{t}(0)=N_{t}^{k}(0)
$$

The more general equation

$$
\begin{equation*}
\alpha G=\alpha_{1} Y_{1}^{2}+\cdots+\alpha_{t} Y_{t}^{2} \tag{1.2}
\end{equation*}
$$

where $\alpha G \neq 0, G$ of degree $\leqq 2 k$, has been treated in two papers, one on the case t even, the other on the case t odd. ${ }^{2}$ In the latter paper a formula for $N_{2 s}(0)$ appeared incidentally. We shall derive this formula anew by the simpler and direct method used in the paper on t even.

To evaluate $N_{2 s+1}(0)$, we make use of a known formula for $N_{2 s}(G)$, the number of solutions of (1.2) for $t=2 s$. Applying this formula, we first evaluate the sums

$$
\sum_{G} \frac{N_{2 s}(G)}{|G|^{w}}, \quad \sum_{G} \frac{N_{2 s}\left(G^{2}\right)}{|G|^{w}},
$$

extended over all primary G; the latter sum leads at once to the determination of $N_{2 s+1}(0)$.
2. Determination of $N_{2 s}(0)$. In equation (1.2), let $t=2 s, \alpha=\alpha_{1}+\cdots$ $+\alpha_{2 s} \neq 0$, so that G is of degree $2 k$. Assume further

$$
\gamma_{i}=\alpha_{2 i-1}+\alpha_{2 i} \neq 0 \quad(i=1, \cdots, s)
$$

Received October 27, 1936.

${ }^{1}$ A polynomial is primary if the coefficient of the highest power of the indeterminate is the unit element of the Galois field. The capitals A, B, E, G, M, U, V, Y will denote primary polynomials.
${ }^{2}$ The even case in Transactions of the American Mathematical Society, vol. 35 (1933), pp. 397-410; the odd case in this Journal, vol. 1 (1935), pp. 298-315. These papers will be cited as I and II, respectively.

