THE QUADRATIC SUBFIELDS OF A GENERALIZED QUATERNION ALGEBRA

BY CLAIBORNE G. LATIMER

1. Introduction. Let \mathfrak{A} be a rational generalized quaternion algebra with the fundamental number d, as defined by Brandt.¹ Every element of \mathfrak{A} , not rational, is a root of a quadratic equation with rational coefficients, and hence defines a quadratic field. The question arises as to what quadratic fields are contained in \mathfrak{A} . The purpose of this note is to prove the following

THEOREM. Let \mathfrak{A} be a rational generalized quaternion algebra, with the fundamental number d, and let F be a quadratic field. \mathfrak{A} contains a field equivalent to F if and only if

(a) F is imaginary when d > 0;

(b) no rational prime factor of d is the product of two distinct prime ideals in F.

Hasse proved a theorem on the splitting fields of an algebra which, when properly specialized, is equivalent to the above theorem, his results being in terms of the *p*-adic extensions of \mathfrak{A} and of F.² Our proof is independent of Hasse's and is short and elementary.

2. Proof of necessary conditions. Suppose \mathfrak{A} contains F. Let F be defined by $(-\alpha)^{\frac{1}{2}}$, α being an integer with no square factor > 1. If d > 0, by the definition of d, \mathfrak{A} contains no element with a negative norm. Hence F is imaginary.

 \mathfrak{A} contains an element *i* such that $i^2 = -\alpha$. Then the trace, or double the scalar part, of *i* is zero. It may be shown that \mathfrak{A} also contains a non-singular element *j*, such that the trace of *j* and the trace of *ij* are zero. Then 1, *i*, *j*, *ij* are linearly independent, and hence form a basis of \mathfrak{A} , $j^2 = -\beta \neq 0$, where β is rational, and ji = -ij. We shall assume, without loss of generality, that β is a rational integer with no square factor >1.

Let $\alpha = \alpha_1 \delta$, $\beta = \beta_1 \delta$, where δ is the positive g.c.d. of α and β . Then $d = \pm AB\Delta$ or $d = \pm 2AB\Delta$, where A, B, Δ are certain positive odd divisors of α , β , δ respectively.³ By the same reference, d is even if and only if

(1)
$$(\alpha_1 + \beta_1) (\beta_1 + \delta) (\delta + \alpha_1) (\alpha_1 + \beta_1 + \delta) \equiv 8 \pmod{16}.$$

Received June 8, 1936.

¹ Brandt, Idealtheorie in Quaternionenalgebren, Mathematische Annalen, vol. 99 (1928), p. 9.

² Hasse, Die Struktur der R. Brauerschen algebrenklassengruppe über einem algebraischen Zahlkörper, Mathematische Annalen, vol. 107 (1933), pp. 731-760; Deuring, Algebren, p. 118.

³ On the fundamental number of a rational generalized quaternion algebra, this Journal, vol. 1 (1935), pp. 433-435. This paper will be referred to hereafter as FN.