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1. Introduction. Let be a rational generalized quaternion algebra with
the fundamental number d, as defined by Brandt. Every element of .I, not
rational, is a root of a quadratic equation with rational coefficients, and hence
defines a quadratic field. The question arises as to what quadratic fields are
contained in I. The purpose of this note is to prove the following
THEOREM. Let be a rational generalized quaternion algebra, with the funda-

mental number d, and let F be a quadratic field. contains a field equivalent to F
if and only if

(a) F is imaginary when d > 0;
(b) no rational prime factor of d is the product of two distinct prime ideals in F.
Hasse proved a theorem on the splitting fields of an algebra which, when

properly specialized, is equivalent to the above theorem, his results being in
terms of the p-adic extensions of ./and of F. Our proof is independent of
Hasse’s and is short and elementary.

2. Proof of necessary conditions. Suppose contains F. Let F be defined
by (- a)1/2, a being an integer with no square factor > 1. If d > 0, by the
definition of d, 1 contains no element with a negative norm. Hence F is
imaginary.
I contains an element i such that i a. Then the trace, or double the

scalar part, of i is zero. It may be shown that ./also contains a non-singular
element j, such that the trace of j and the trace of ij are zero. Then 1, i, j, ij
are linearly independent, and hence form a basis of l, j - 0, where fl
is rational, and ji -ij. We shall assume, without loss of generality, that
is a rational integer with no square factor > 1.

Let a adi, ti, where is the positive g.c.d, of a and . Then
d -4- ABA or d q- 2ABA, where A, B, A are certain positive odd divisors
of a, , / respectively. By the same reference, d is even if and only if

(1) (Ol "- 1) (1 -JC ) ( -- 1) (1 "+" 1 2C {) S (rood 16).
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