THE QUADRATIC SUBFIELDS OF A GENERALIZED QUATERNION ALGEBRA

By Claiborne G. Latimer

1. Introduction. Let \mathfrak{A} be a rational generalized quaternion algebra with the fundamental number d, as defined by Brandt. ${ }^{1}$ Every element of \mathfrak{N}, not rational, is a root of a quadratic equation with rational coefficients, and hence defines a quadratic field. The question arises as to what quadratic fields are contained in \mathfrak{A}. The purpose of this note is to prove the following
Theorem. Let \mathfrak{A} be a rational generalized quaternion algebra, with the fundamental number d, and let F be a quadratic field. $\quad \mathfrak{A}$ contains a field equivalent to F if and only if
(a) F is imaginary when $d>0$;
(b) no rational prime factor of d is the product of two distinct prime ideals in F.

Hasse proved a theorem on the splitting fields of an algebra which, when properly specialized, is equivalent to the above theorem, his results being in terms of the p-adic extensions of \mathfrak{N} and of $F .{ }^{2}$ Our proof is independent of Hasse's and is short and elementary.
2. Proof of necessary conditions. Suppose \mathfrak{A} contains F. Let F be defined by $(-\alpha)^{\frac{1}{2}}, \alpha$ being an integer with no square factor >1. If $d>0$, by the definition of d, \mathfrak{M} contains no element with a negative norm. Hence F is imaginary.
\mathfrak{A} contains an element i such that $i^{2}=-\alpha$. Then the trace, or double the scalar part, of i is zero. It may be shown that \mathfrak{A} also contains a non-singular element j, such that the trace of j and the trace of $i j$ are zero. Then $1, i, j, i j$ are linearly independent, and hence form a basis of $\mathfrak{A}, j^{2}=-\beta \neq 0$, where β is rational, and $j i=-i j$. We shall assume, without loss of generality, that β is a rational integer with no square factor >1.

Let $\alpha=\alpha_{1} \delta, \beta=\beta_{1} \delta$, where δ is the positive g.c.d. of α and β. Then $d= \pm A B \Delta$ or $d= \pm 2 A B \Delta$, where A, B, Δ are certain positive odd divisors of α, β, δ respectively. ${ }^{3}$ By the same reference, d is even if and only if

$$
\begin{equation*}
\left(\alpha_{1}+\beta_{1}\right)\left(\beta_{1}+\delta\right)\left(\delta+\alpha_{1}\right)\left(\alpha_{1}+\beta_{1}+\delta\right) \equiv 8 \quad(\bmod 16) . \tag{1}
\end{equation*}
$$

[^0]
[^0]: Received June 8, 1936.
 ${ }^{1}$ Brandt, Idealtheorie in Quaternionenalgebren, Mathematische Annalen, vol. 99 (1928), p. 9.
 ${ }^{2}$ Hasse, Die Struktur der R. Brauerschen algebrenklassengruppe über einem algebraischen Zahlkörper, Mathematische Annalen, vol. 107 (1933), pp. 731-760; Deuring, Algebren, p. 118.
 ${ }^{3}$ On the fundamental number of a rational generalized quaternion algebra, this Journal, vol. 1 (1935), pp. 433-435. This paper will be referred to hereafter as FN.

