EQUIVALENCE OF MULTILINEAR FORMS SINGULAR ON ONE INDEX

BY RUFUS OLDENBURGER

1. Introduction. Any *p*-way matrix $A = (a_{ij} \dots b_k)$ of order *n* can be "factored" in the form

(1')
$$A = \left(\sum_{\alpha=1}^{k} a_{\alpha i} b_{\alpha j} \cdots d_{\alpha k}\right) \qquad (i, j, \cdots, k = 1, \cdots, n),$$

where $h \leq n^{p-1}$. Hitchcock,¹ using the polyadic point of view, has determined minimum values of h for some given numerical values of n and p. The representation (1') implies that any multilinear form

 $F = a_{ij} \dots k x_i y_j \dots z_k \qquad (i, \dots, k = 1, \dots, n)$

(repeated indices indicate summation) is equivalent under transformations

$$(2_1) x'_{\dot{\alpha}} = a_{\alpha i} x_i ,$$

$$(2_2) y'_{\beta} = b_{\beta j} y_j$$

$$(2_p) z_{\gamma}' = d_{\gamma k} z_k \,,$$

to the form

$$R = x'_{\alpha}y'_{\alpha}\cdots z'_{\alpha} \qquad (\alpha = 1, \cdots, h),$$

where $h \leq n^{p-1}$ and the transformations $(2_1), \dots, (2_p)$ are not necessarily nonsingular.

We shall say that the matrix $(a_{ij} \ldots_k a_{\alpha i})$ of the form F' obtained from Fby applying the transformation $x_i = a_{\alpha i} x'_{\alpha}$ to F, where $(a_{\alpha i})$ is non-singular, is equivalent to $(a_{ij}\ldots_k)$; we shall also say that F' is equivalent to F. If the 2-way matrices $(a_{\alpha i}), \ldots, (d_{\alpha k})$ of (1') are all singular on their columns (α being taken as the row index in these matrices), the matrix A is equivalent to a matrix of lower order of the form (1'), where at least one of the matrices $(a_{\alpha i}), \ldots, (d_{\alpha k})$ is non-singular on its columns. The number h of (1') is then between the limits $n \leq h \leq n^{p-1}$. In another paper² the author treated the special case where h takes the minimum value n. He obtained necessary and sufficient conditions for the factorability of a matrix A into the form (1'), where the matrices $(a_{\alpha i}), \ldots, (d_{\alpha k})$ are all non-singular. The method of

Received January 24, 1936; in revised form, June 11, 1936.

¹ F. L. Hitchcock, A new method in the theory of guantics, Journal of Mathematics and Physics, vol. 8 (1929), p. 83.

² R. Oldenburger, Non-singular multilinear forms and certain p-way matrix factorizations, Transactions of the American Mathematical Society, vol. 39 (1936), pp. 422-455. This paper will be denoted by N. S.