ON CERTAIN EQUATIONS IN RELATIVE-CYCLIC FIELDS

By Leonard Carlitz

1. Introduction. Let F be a quite arbitrary field-the characteristic may be 0 or some prime p. Let W be a field containing F such that W / F is cyclic of relative degree k. The group of W / F is generated by the substitution S : if α is some quantity in W, we shall use the notation α^{s} to denote the result of operating on α with S. If then α, β are assigned elements of W, the equations which we shall study are

$$
\begin{equation*}
\xi^{s}=\alpha \xi \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta^{s}=\alpha \eta+\beta \tag{1.2}
\end{equation*}
$$

it is of course supposed that ξ and η also are in W.
Suppose $W=F(\vartheta)$, that is, W is generated by adjoining ϑ to F, where ϑ is a root of $f(\vartheta)=0$, and $f(x)$ is a polynomial with coefficients in F and irreducible in F. It is convenient to assume that the coefficient of the highest power of x in $f(x)$ is unity. Let $\alpha=g(\vartheta)$, where $g(x)$ is a polynomial with coefficients in F. Then we show that (1.1) has a non-trivial solution if and only if

$$
R(g, f)=1 ;
$$

here $R(g, f)$ is the resultant of the polynomials g and f, and may be calculated by means of the division algorithm. If g satisfies certain conditions, a theorem of reciprocity for (1.1) may be stated; in particular, if F is a finite field, this reduces to a known theorem (see §5).

As for equation (1.2), if α is such that (1.1) is not satisfied, then (1.2) has a unique solution. If, however, (1.1) does admit of a non-trivial solution, then we may assume $\alpha=1$, and our equation becomes

$$
\begin{equation*}
\xi^{s}=\xi+\beta . \tag{1.3}
\end{equation*}
$$

If now we put $\beta=h(\vartheta)$, where $h(x)$ is a properly chosen polynomial in F, then we prove that (1.3) is solvable if and only if the coefficient of x^{k-1} in $h(x) f^{\prime}(x)$, reduced modulo $f(x)$, is zero; here $f^{\prime}(x)$ denotes the derivative of $f(x)$.

In §4 some properties of the solutions of (1.3) are derived. Finally in §5 we assume F to be a finite field and the result for (1.3) as well as for (1.1) is seen to reduce to a known theorem.

Received October 6, 1936; presented to the American Mathematical Society, April 11, 1936.

