SYMMETRIC FUNCTIONS OF NON-COMMUTATIVE ELEMENTS

By Margarete C. Wolf

Introduction. A study of symmetric polynomials of matrices, for which the commutative law of multiplication need not necessarily be valid, led to the study of symmetric polynomials of certain abstract elements for which the processes of addition and multiplication obey the postulates of a linear associative algebra. This results in a generalization of the definition of the elementary symmetric functions. For example, if x_{1} and x_{2} are such elements, let $x_{1} x_{2}$ symbolize x_{1} multiplied on the right by x_{2} and let $x_{1}+x_{2}$ indicate addition of x_{1} and x_{2}; then since $x_{1} x_{2}$ differs in general from $x_{2} x_{1}$, the second elementary symmetric function of the elements x_{1} and x_{2} becomes

$$
E_{2}=\Sigma x_{1} x_{2}=x_{1} x_{2}+x_{2} x_{1} ;
$$

but as before, $E_{1}=\Sigma x_{1}=x_{1}+x_{2}$. The simple symmetric functions of third degree of the elements x_{1} and x_{2} are

$$
\begin{gathered}
\Sigma x_{1} x_{2} x_{1}=x_{1} x_{2} x_{1}+x_{2} x_{1} x_{2}, \quad \Sigma x_{1} x_{2}^{2}=x_{1} x_{2}^{2}+x_{2} x_{1}^{2} \\
\Sigma x_{1}^{2} x_{2}=x_{1}^{2} x_{2}+x_{2}^{2} x_{1}, \quad \Sigma x_{1}^{3}=x_{1}^{3}+x_{2}^{3}
\end{gathered}
$$

These functions cannot be expressed as polynomials in E_{1} and E_{2} as in the case of commutative elements, but another polynomial, for example $\Sigma x_{1} x_{2} x_{1}$, must be defined as an elementary symmetric function in addition to E_{1} and E_{2} if the fundamental theorem is to be reëstablished. Note also that $E_{1} E_{2}$ differs from $E_{2} E_{1}$ for non-commutative elements. If three elements x_{1}, x_{2}, x_{3} are considered, two polynomials of third degree are required to serve as elementary symmetric functions instead of the one function $E_{3}=\Sigma x_{1} x_{2} x_{3}$ of the commutative elements. Two polynomials which may be used are $E_{3}=\Sigma x_{1} x_{2} x_{3}$ and $\Sigma x_{1} x_{2} x_{1}$. This paper shows that as the number of elements and the degree are increased, an infinite sequence of symmetric polynomials, consisting of a finite set of one or more for each degree can be chosen so that every symmetric polynomial may be expressed uniquely in terms of the polynomials of this sequence and the coefficients of the original polynomial, with coefficients which are integral. This sequence may be chosen in more than one way but the number for each degree is unique.

Since by the Poincaré equivalence theorem every linear associative algebra is equivalent to a matric algebra, no generality is lost if the elements are taken as matrices.

1. Simple symmetric polynomials and elements completely non-commutative of order m. The usual definitions and theorems which apply to sym-

Received October 31, 1935; presented to the American Mathematical Society, September 10, 1935, under the title Symmetric functions of matrices.

