TWO SYSTEMS OF POLYNOMIALS FOR THE SOLUTION OF LAPLACE'S INTEGRAL EQUATION

By H. Bateman

1. In the radiation and conduction problems ${ }^{1}$ in which the integral equation

$$
f(x)=\int_{0}^{\infty} e^{-x t} g(t) d t
$$

occurs, the variable x takes positive values, and so the function $g(t)$ is to be derived from the values of x for $x>0$. In the inversion formulas given by Lord Kelvin ${ }^{2}$

$$
\begin{aligned}
& f(x)=x^{-\frac{1}{2}} \int_{0}^{\infty} \cos \sin (u / 2 x) F(u) d u, \\
& g(t)=\left(\pi^{3} t\right)^{-\frac{1}{2}} \int_{0}^{\infty} d u \int_{0}^{\infty} \frac{\operatorname{ch}}{\operatorname{sh}}(u t)^{\frac{1}{2}} \frac{\cos }{\sin }(u t)^{\frac{1}{2}} \frac{\cos }{\sin }(u / 2 x) x^{-\frac{3}{2}} f(x) d x,
\end{aligned}
$$

the integration with respect to x does indeed run from 0 to ∞, but conditions to be satisfied by $f(x)$ or $F(u)$ sufficient to make one of these formulas valid have not yet been formulated in a useful form. A similar remark applies to the somewhat analogous formula of F. Sbrana. ${ }^{3}$ A more complete inversion formula in which the integration runs from $x=0$ to $x=\infty$ has been given recently by R. E. A. C. Paley and N. Wiener. ${ }^{4}$ In Murphy's first method ${ }^{5}$ of solving the integral equation, $x f(x)$ is expanded in a series of ascending powers of x^{-1} and $g(t)$ is expressed as the coefficient of x^{-1} in $f(x) e^{x t}$ which, by Cauchy's theory, may be expressed as a contour integral. This method was generalized by Lerch ${ }^{6}$ for the case in which $x^{\nu} f(x)$ can be expanded in a series of powers of x^{-1} and the resulting expression can be transformed into a contour integral resembling that used in the well-known inversion formula of Laplace, Riemann and Mellin.

Murphy also gave a method in which $f(x)$ is expanded in a series of inverse
Received February 3, 1936; presented to the American Mathematical Society, November 30, 1935.
${ }^{1}$ H. Poincaré, Jour. de Phys., vol. 11 (1912), p. 34; L. Silberstein, Phil. Mag., vol. 15 (1932), p. 375; H. Bateman, Proc. Camb. Phil. Soc., vol. 15 (1910), pp. 423-427.
${ }^{2}$ Lord Kelvin, Camb. Math. Jour., vol. 3 (1842), p. 170; Math. and Phys. papers, vol. 1, p. 10. See also H. Bateman, Messenger of Math., vol. 57 (1928), p. 145.
${ }^{3}$ F. Sbrana, Rend. Lincei, (5), vol. 31 (1922), pp. 454-456.
${ }^{4}$ Fourier Transforms in the Complex Domain, Chapter 3.
${ }^{5}$ R. Murphy, Camb. Phil. Trans., vol. 4 (1833), p. 353.
${ }^{6}$ M. Lerch, Rozpravy, vol. 2 (1893), p. 9; Fortschritte der Math., vol. 25 (1893), p. 482.

