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1. In the radiation and conduction problems in which the integral equation

f(x) e-tg(t)dt

occurs, the variable x takes positive values, and so the function g(t) is to be
derived from the values of x for x 0. In the inversion formulas given by
Lord Kelvin

f(x) x-i cos (u/2x)F(u)du,sin

fo f Ch (ut), cS (ut), cS (u/2x)x-f(x)dx,g(t) (t)-i du
sh sin sin

the integration with respect to x does indeed run from 0 to , but conditions
to be satisfied by f(x) or F(u) sufficient to make one of these formulas valid
have not yet been formulated in a useful form. A similar remark applies to
the somewhat analogous formula of F. Sbrana. A more complete inversion
formula in which the integration runs from x 0 to x has been given
recently by R. E. A. C. Paley and N. Wiener.4 In Murphy’s first method
of solving the integral equation, xf(x) is expanded in a series of ascending powers
of x-1 and g(t) is expressed as the coefficient of x- in f(x)et which, by Cauchy’s
theory, may be expressed as a contour integral. This method was generalized
by Lerch for the case in which xf(x) can be expanded in a series of powers
of x-1 and the resulting expression can be transformed into a contour integral
resembling that used in the well-known inversion formula of Laplace, Riemann
and Mellin.
Murphy also gave a method in which f(x) is expanded in a series of inverse
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