MOMENTS OF INERTIA OF CONVEX REGIONS

By Fritz John

Let R denote a closed and bounded two-dimensional convex region. Let d be the greatest, Δ the smallest diameter of R, a diameter being defined as the distance of two parallel lines of support. ${ }^{1}$ Let A be the area and L the circumference of R. It was recently proved by F. Behrend that there exist for any R affine transformations transforming R into convex regions for which any one of the following inequalities is satisfied:

$$
\frac{d}{\Delta} \leqq \sqrt{2}, \quad \frac{A}{\Delta^{2}} \leqq 1, \quad \bar{L} \leqq \frac{1}{4} \sqrt{ } \overline{2}
$$

if, moreover, R has a center, i.e., if R is symmetrical with respect to some point, then there are also affine transformations transforming R into regions for which any of the following inequalities hold:

$$
\frac{d^{2}}{A} \leqq 2, \quad \frac{L^{2}}{A} \leqq 16, \quad \frac{L}{\Delta} \leqq 4 .
$$

The corresponding equalities are all satisfied in the case of a square.
Now let λ denote the ratio of the major and minor axes of the ellipse of inertia of R corresponding to the center of mass of R in a homogeneous mass distribution, i.e., of the "central" ellipse of inertia of R. We shall prove in this paper that the inequalities

$$
\begin{equation*}
\frac{d}{\Delta \lambda} \leqq \sqrt{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{A}{\Delta^{2} \lambda} \leqq 1 \tag{2}
\end{equation*}
$$

hold; if R has a center, then also

$$
\begin{equation*}
\frac{d^{2}}{A \lambda} \leqq 2 . \tag{3}
\end{equation*}
$$

These inequalities include some of Behrend's results; for every R can be easily transformed by an affine transformation into a region for which the central ellipse of inertia is a circle, i.e., for which $\lambda=1$, and in this case $d / \Delta \leqq \sqrt{2}$, $A / \Delta^{2} \leqq 1$, and if R has a center $d^{2} / A \leqq 2$ also.

In a second paper I intend to show (1) that if R has a center,

$$
\frac{d}{\Delta \lambda}>\frac{\sqrt{2+\sqrt[3]{100}}}{3}
$$

[^0]
[^0]: Received December 3, 1935.
 ${ }^{1}$ For notations see Theorie der konvexen Körper by Bonnesen and Fenchel; we shall refer to this book as B.-F.

