THE ZEROS OF JACOBI AND RELATED POLYNOMIALS

By C. Eugene Buell

Introduction

1. Definitions. The ultraspherical polynomials of degree $n, P_{n}^{(\lambda)}(\cos \vartheta)$, are defined as polynomials not vanishing identically for which the differential equation

$$
\begin{equation*}
y^{\prime \prime}+\left\{(n+\lambda)^{2}+\lambda(1-\lambda) \sin ^{-2} \vartheta\right\} y=0 \tag{1}
\end{equation*}
$$

has the solution $y=\sin ^{\lambda} \vartheta \cdot P_{n}^{(\lambda)}(\cos \vartheta)$. It will also be convenient to consider the generating function of these polynomials normalized in a proper way, namely,

$$
\begin{equation*}
\left(1-2 w \cos \vartheta+w^{2}\right)^{-\lambda}=\sum_{n=0}^{\infty} P_{n}^{(\lambda)}(\cos \vartheta) \cdot w^{n} \tag{2}
\end{equation*}
$$

The Jacobi polynomials of degree $n, P_{n}^{(\alpha, \beta)}(\cos \vartheta)$, are defined as polynomials not vanishing identically for which the differential equation

$$
\begin{equation*}
y^{\prime \prime}+\left\{\left(n+\frac{\alpha+\beta+1}{2}\right)^{2}+\frac{\frac{1}{4}-\alpha^{2}}{4 \sin ^{2} \theta / 2}+\frac{\frac{1}{4}-\beta^{2}}{4 \cos ^{2} \theta / 2}\right\} y=0 \tag{3}
\end{equation*}
$$

has the solution $y=[\sin (\vartheta / 2)]^{\alpha+\frac{1}{2}}[\cos (\vartheta / 2)]^{\beta+\frac{1}{2}} . P_{n}^{(\alpha, \beta)}(\cos \vartheta)$.
The Jacobi polynomials reduce to the ultraspherical polynomials if $\alpha=\beta=$ $\lambda-\frac{1}{2}$. The ultraspherical polynomials reduce to the Legendre polynomials if $\lambda=\frac{1}{2}$. Concerning further properties of these polynomials, we refer ${ }^{1}$ to [5] and [8].
2. Previous estimates. For $\lambda>-\frac{1}{2}$ all of the zeros of the ultraspherical polynomials are real. Let ϑ_{k} denote the k-th zero in increasing order, $0<\vartheta_{k}<\pi$. The following estimates for ϑ_{k} have been given:
(1) Bruns [2] for Legendre polynomials:
(A)

$$
\frac{k-\frac{1}{2}}{n+\frac{1}{2}} \pi<\vartheta_{k}<\frac{k}{n+\frac{1}{2}} \pi \quad(k=1,2, \cdots, n)
$$

(2) A. Markoff [4] and Stieltjes [7] for Legendre polynomials:
(B)

$$
\frac{k-\frac{1}{2}}{n} \pi<\vartheta_{k}<\frac{k}{n+1} \pi \quad\left(k=1,2, \ldots,\left[\frac{n}{2}\right]\right)
$$

Received December 2, 1935.
${ }^{1}$ Numbers in bold face type refer to the bibliography at the end of this paper.

