THE IDEAL WARING THEOREM FOR TWELFTH POWERS

By L. E. Dickson

1. Ideal. Let g denote the greatest integer $<(3 / 2)^{n}$. Let

$$
\begin{equation*}
P=g 2^{n}-1, \quad I=g+2^{n}-2 \tag{1}
\end{equation*}
$$

Evidently $P<3^{n}$. Consider all the ways in which P can be a sum of positive integral n-th powers, necessarily 1^{n} or 2^{n}. There will occur more than I summands except when there are exactly $g-1$ terms 2^{n} and exactly $2^{n}-1$ terms 1. Hence P is a sum of I, but not fewer, n-th powers.

When $n=2,3,4, g=2,3,5, I=4,9,19$. Lagrange and Euler proved that every positive integer is a sum of four squares. In 1770 Waring conjectured that "every positive integer is a sum of 9 cubes, also of 19 fourth powers, etc." The proof for 9 cubes was first obtained by Wieferich. ${ }^{1}$ For fourth powers, the best result yet proved is that 35 suffice, while all integers $<10^{26}$ are sums of 19. All tables extant confirm the following amplification of Waring's conjecture: Every positive integer is a sum of $I=g+2^{n}-2$ integral n-th powers $\geqq 0$. This will be called the ideal Waring theorem. Proof has been published only for $n=2$ and $n=3$.
2. Summary for twelfth powers. We here prove the ideal Waring theorem for $n=12$, viz.,

Theorem 1. Every positive integer is a sum of $I=4223$ integral twelfth powers. But we go further and prove
Theorem 2. Every integer $>2 \cdot 3^{12}$ is a sum of 2405 twelfth powers. Every one $>3 \cdot 3^{12}$ is a sum of 1560 powers. Every one $>2.5^{12}+7^{12}+8^{12}$ is a sum of 440 .

There are only two earlier results. ${ }^{2}$ From Kempner's identity, we find that $61 / 4$ billion twelfth powers suffice. By a short table, the writer proved also that 10711 suffice. The present table gives decompositions of 6908733 consecutive integers into twelfth powers.
3. Minimum decompositions. We employ

$$
\begin{align*}
& a=2^{12}=4096, \quad b=3^{12}=531441, \quad c=4^{12}=16777216, \\
& d=5^{12}=244140625, \quad f=6^{12}=2176782336, \tag{1}\\
& g=7^{12}=13841287201, \quad h=8^{12}=68719476736,
\end{align*}
$$

Received February 7, 1936.

${ }^{1}$ Math. Annalen, vol. 66 (1909), pp. 99-101. The proof was corrected and greatly simplified by Dickson, Trans. Amer. Math. Soc., vol. 30 (1927), pp. 1-7.
${ }^{2}$ Dickson, Bull. Amer. Math. Soc., vol. 39 (1933), p. 713.

