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1. Introduction. The following theorem, first given by Montel, was com-
pleted by RadS.
A necessary and sucient condition that the non-negative continuous function

p(u, v) be of class PL is that for all real constants a, the function

eu+v p(u, v)

be subharmonic.
The above theorem has been generalized by Kierst and Saks.
It is the purpose of the present paper to present an immediately equivalent

form (2) of the Montel-Rad5 theorem, and to give two simple geometric conse-
quences (4 and 5). Without recourse to the Montel-Rad5 theorem, the
latter of these consequent results has been given previously; it is repeated
briefly here because the present setting seems to be its proper one.

2. LEMMA. A necessary and suicient condition that the non-negative con-
tinuous function p(u, v), for (u, v) in some (tomain D, be of class PL is that for all
analytic functions f(u -- iv), for (u, v) in D, the function

(1) p(u, v) f(u - iv)

be subharmonic.
Necessity. If p(u, v) is of class PL, since the absolute value of an analytic

function is of class PL, and since the product of two functions of class PL is a
function of class PL, it follows that (1) is of class PL, and therefore, " fortiori,
is subharmonic.
Suciency. If (1) is subharmonic for all f(u + iv), it is subharmonic in
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