ON THE FUNDAMENTAL NUMBER OF A RATIONAL GENERALIZED QUATERNION ALGEBRA

By Claiborne G. Latimer

1. Introduction. Let \mathfrak{A} be a rational generalized quaternion algebra, hereafter referred to merely as an algebra. \mathfrak{A} has a basis $1, i, j, i j$:

$$
i^{2}=-\alpha, \quad j^{2}=-\beta, \quad i j=-j i
$$

where α, β are integers, neither divisible by the square of a prime. Such a basis will be said to be a normal basis associated with α and β.

Brandt defined the fundamental number d of \mathfrak{N}, employing an arbitrarily chosen maximal realm of integrity ${ }^{5} 5$ in his definition, and showed that d is independent of the particular \mathbb{B} in \mathfrak{A} which is employed, and that two algebras with the same d are equivalent. ${ }^{1}$ We shall determine d explicitly in terms of α and β. This gives a simple criterion for the equivalence of two algebras.

Starting with a normal basis, as above, Albert ${ }^{2}$ showed by a series of transformations that \mathfrak{H} has such a basis associated with certain integers τ and σ which have the following properties:
(a) τ is a positive prime, $\tau \equiv 3(\bmod 4)$;
(b) σ is an integer prime to τ, containing no square factor >1, and $-\sigma$ is a quadratic residue of τ;
(c) $-\tau$ is a quadratic non-residue of every odd prime factor of σ;
(d) if σ is even, $\tau \equiv 3(\bmod 8)$.

From the method by which such a basis is obtained, there is no obvious relation between the initial α, β and the final $\tau, \sigma . \quad \tau$ is any one of the infinitude of primes represented by a certain quadratic form, with a finite number of exceptions. σ was not shown to be unique, but if \mathfrak{A} is not a division algebra, it was shown that $\sigma=-1$.

We shall show that $\sigma=d$, and hence is uniquely determined by \mathfrak{Y}. Also, that τ may be an arbitrarily chosen prime satisfying the four conditions above. We may take τ as the least such prime and thus have a normal basis associated with a pair of integers which are uniquely determined by $\mathfrak{\vartheta}$.
2. The determination of d. According to Dickson's ${ }^{3}$ definition, a set of integral elements in \mathfrak{A} is a set having certain properties R, C, U, M. It may be

[^0]
[^0]: Received May 15, 1935.
 ${ }^{1}$ Idealtheorie in Quaternionentheorie, Mathematische Annalen, vol. 99 (1928), pp. 9, 12.
 ${ }^{2}$ Integral domains in rational generalized quaternion algebras, Bulletin of the American Mathematical Society, vol. 40 (1934), pp. 164-76. In particular, see Theorems 2, 3. In this paper, we replace Albert's τ, σ by $-\tau,-\sigma$, respectively.
 ${ }^{3}$ Algebras and their Arithmetics, pp. 141-2.

