ON THE FUNDAMENTAL NUMBER OF A RATIONAL GENERALIZED QUATERNION ALGEBRA

BY CLAIBORNE G. LATIMER

1. Introduction. Let \mathfrak{A} be a rational generalized quaternion algebra, hereafter referred to merely as an algebra. \mathfrak{A} has a basis 1, i, j, ij:

$$i^2 = -lpha, \qquad j^2 = -eta, \qquad ij = -ji$$

where α , β are integers, neither divisible by the square of a prime. Such a basis will be said to be a normal basis associated with α and β .

Brandt defined the fundamental number d of \mathfrak{A} , employing an arbitrarily chosen maximal realm of integrity \mathfrak{G} in his definition, and showed that d is independent of the particular \mathfrak{G} in \mathfrak{A} which is employed, and that two algebras with the same d are equivalent.¹ We shall determine d explicitly in terms of α and β . This gives a simple criterion for the equivalence of two algebras.

Starting with a normal basis, as above, Albert² showed by a series of transformations that \mathfrak{A} has such a basis associated with certain integers τ and σ which have the following properties:

(a) τ is a positive prime, $\tau \equiv 3 \pmod{4}$;

- (b) σ is an integer prime to τ , containing no square factor > 1, and $-\sigma$ is a quadratic residue of τ ;
- (c) $-\tau$ is a quadratic non-residue of every odd prime factor of σ ;
- (d) if σ is even, $\tau \equiv 3 \pmod{8}$.

From the method by which such a basis is obtained, there is no obvious relation between the initial α , β and the final τ , σ . τ is any one of the infinitude of primes represented by a certain quadratic form, with a finite number of exceptions. σ was not shown to be unique, but if \mathfrak{A} is not a division algebra, it was shown that $\sigma = -1$.

We shall show that $\sigma = d$, and hence is uniquely determined by \mathfrak{A} . Also, that τ may be an arbitrarily chosen prime satisfying the four conditions above. We may take τ as the least such prime and thus have a normal basis associated with a pair of integers which are uniquely determined by \mathfrak{A} .

2. The determination of d. According to Dickson's³ definition, a set of integral elements in \mathfrak{A} is a set having certain properties R, C, U, M. It may be

Received May 15, 1935.

¹ Idealtheorie in Quaternionentheorie, Mathematische Annalen, vol. 99 (1928), pp. 9, 12. ² Integral domains in rational generalized quaternion algebras, Bulletin of the American Mathematical Society, vol. 40 (1934), pp. 164–76. In particular, see Theorems 2, 3. In this paper, we replace Albert's τ , σ by $-\tau$, $-\sigma$, respectively.

³ Algebras and their Arithmetics, pp. 141-2.