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Introduction. In this paper we shall deal with the homogeneous system of
differential equations
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and the non-homogeneous system
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where the a,,,(), 8.() and £,(t) are complex a.p. (almost periodic)! functions of
the real variable t. It is the purpose of this paper to point out the manner in
which the a.p. solutions of the above equation depend on the modules? of the
a,,, () and B,(f). We shall be interested in determining the form of those solu-
tions which are a.p., and not in determining conditions under which a.p. solu-
tions exist. Such conditions have already been given in papers by Favard,?
Bochner,* and Cameron.5

For the sake of simplicity in notation, we rewrite the above equations in the
form

1) Dlz(t)] = A®)-z(®)

and

@) Diz(®)] = A@®)-2(®) + b®),

where z(¢) and b(t) are N-dimensional vectors having the components &(¢), --- ,

&x(®) and B1(), - - - , Bn(t) respectively, A (f) is the matrix of the a,,.(t), and 4.2
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