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1. Introduction. In recent years projective differential geometers have mani-
fested increasing interest in the neighborhoods of singular elements. For ex-
ample, in studying the neighborhood of an ordinary point on an analytic plane
curve, inflexion points are usually excluded from consideration as singular. How-
ever, Bompiani has constructed a theory of the neighborhood of an inflexion
point on a plane curve, which has found fruitful applications in some work of Su,
and also in a recent paper of the author.
An inflexion point on a plane curve being defined as usual to be a point where

the curve possesses a unique tangent having precisely three-point contact, the
singularity which naturally presents itself next for consideration is the sextactic
point, which is defined to be a point where the curve possesses a unique tangent
having precisely two-point contact, and also possesses a proper osculating conic
having precisely six-point contact with the curve. So at a sextactic point the
osculating conic hyperosculates the curve in the same sense as does the inflexional
tangent at an inflexion point.

In this note a brief study is made of the neighborhood of a sextactic point. In
2 a canonical power series expansion is deduced which represents an analytic
plane curve in the neighborhood of a sextactic point on it. In 3 are found
some applications of this expansion.

2. Canonical power series expansion. Let us establish a projective coSr-
dinate system in a plane, in which a point has non-homogeneous coSrdinates
x, y and homogeneous coSrdinates x, x, x, connected by the relations x x/x,
y x/x. The context will show in any instance which coSrdinates are being
used. Then let us consider a curve C which, in the neighborhood of a point
O(b, c) on it, can be represented by a power series expansion of the form

(1) y c a(x b) - a(x b) + a(x b) +
By suitable choice of the coSrdinate system this expansion can be very much
simplified, and it is the purpose of this section to carry this simplification as far
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