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1. Statement of main theorem. Let B be any linear metric space of three
dimensions, whose points we shall suppose mapped linearly onto those of
ordinary space.

It is natural to call a vector - issuing from a point p of B "perpendicular"
to a second such vector - [in symbols, ---] if and only if there is no point on
the extended line through - nearer to q than p.
Remark. Since translations of space are isometric, and uniform expansions

about the origin multiply all distances by a constant factor of proportionality,
p-Ip-7 implies that any vector parallel or anti-parall,el to is perpendicular
to any vector issuing from the same point and parallel or antiparallel to -.
Therefore it is legitimate to say that the direction of - is perpendicular to the
direction of -.
The main purpose of this paper is to prove
THEOREM 1. If -J.-7 implies prJ.pq, and if there is at most one perpendicular

from a given line to a point not on that line, then B is "equivalent" to cartesian
space (i.e., isometric with it under a linear transformation).

2. Outline of proof. The proof of Theorem 1 involves such simple ideas that
it is sufficient to sketch it.

First, let us fix on a particular linear representation of B in ordinary space.
It is clear that the metric of B is determined by the "unit pseudo-sphere" S of
points whose absolute values (in the terminology of yon Neumann) are unity.
It is also clear that S is a convex surface.
The argument then proceeds in two main steps. First it is shown that rela-

tive to any choice of cylindrical coSrdinates, the equation defining S is of the form

(1) r f(z).g(O).

Then it is shown (in effect) that any plane section of such a surface is an ellipse,
essentially completing the proof.
To establish equation (1), let us first note that the radius from the origin

o to any point s on S is perpendicular to every line in any plane of support of S
at s. Hence by the uniqueness and reciprocity of perpendicularity, S can have
at most one plane of support at s.
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As defined for instance by J. von Neumann, On complete topological spaces, Trans.

Am. Math. Soc., vol. 37 (1935), pp. 3-4. The reader’s attention is called to the definition
of orthogonality in B. D. Roberts’ On the geometry of abstract vector spaces, TShoku Math.
Jour., vol. 39 (1934), pp. 42-59, which is essentially different.
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