ON CERTAIN FUNCTIONS CONNECTED WITH POLYNOMIALS IN A GALOIS FIELD

By Leonard Carlitz

1. Introduction. Let $G F\left(p^{n}\right)$ denote a fixed Galois field ${ }^{1}$ of order p^{n}; let $E=E(x)$ denote a polynomial in an indeterminate x with coefficients in $G F\left(p^{n}\right)$. Consider the product $\psi_{k}(t)=\Pi(t-E)$, extended over all E of degree $<k$, where k is an arbitrary positive integer. We show, to begin with, that the product has the expansion

$$
\sum_{j=0}^{k}(-1)^{i}\left[\begin{array}{c}
k \tag{1.01}\\
j
\end{array}\right]^{p^{n i}}
$$

the coefficients (defined explicitly in §2) having certain properties analogous to those of the binomial coefficients. Of the properties of $\psi_{k}(t)$, it is evident from the form of (1.01) that, for c in $G F\left(p^{n}\right)$,

$$
\psi_{k}(c t)=c \psi_{k}(t), \quad \psi_{k}(t+u)=\psi_{k}(t)+\psi_{k}(u) ;
$$

we accordingly call $\psi_{k}(t)$ a linear polynomial. ${ }^{2}$ As a second characteristic property we mention

$$
\psi_{k}(x t)-x \psi_{k}(t)=\left(x^{p^{n k}}-x\right) \psi_{k-1}^{p n}(t) .
$$

This relation suggests the study of the operator Δ defined by

$$
\begin{equation*}
\Delta f(t)=f(x t)-x f(t), \tag{1.02}
\end{equation*}
$$

where $f(t)$ is a linear polynomial. See $\S 3$.
We suppose next that k in (1.01) becomes infinite; the product $\Pi(t-E)$ must be modified somewhat. Actually we consider

$$
\begin{equation*}
\Pi^{\prime}\left(1-\frac{t^{p n-1}}{E^{p^{n}-1}}\right) \tag{1.03}
\end{equation*}
$$

the product extending over all primary E, that is, over all polynomials in which the coefficient of the highest power of x is the 1 element of the Galois field. As we shall see, the question of convergence causes little difficulty; we find that the infinite product (1.03) has the expansion

$$
\begin{equation*}
\frac{1}{\xi} \psi(t \xi)=\frac{1}{\xi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{F_{k}} t^{p n k} \xi^{p n k} \tag{1.04}
\end{equation*}
$$

[^0]
[^0]: Received April 17, 1935.
 ${ }^{1}$ For the properties of Galois fields assumed here, see L. E. Dickson, Linear Groups, 1901, pp. 3-54.
 ${ }^{2}$ Called p-polynomials by O. Ore, Transactions of the American Mathematical Society, vol. 35 (1933), pp. 559-584.

