ON CERTAIN FUNCTIONS CONNECTED WITH POLYNOMIALS
IN A GALOIS FIELD

By LeEoNARD CARLITZ

1. Introduction. Let GF(p") denote a fixed Galois field* of order p»; let
E = E(z) denote a polynomial in an indeterminate « with coefficients in GF (p™).
Consider the product y:(t) = II(t — E), extended over all E of degree < k,
where k is an arbitrary positive integer. We show, to begin with, that the
product has the expansion
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the coefficients (defined explicitly in §2) having certain properties analogous to
those of the binomial coefficients. Of the properties of ¥x(2), it is evident from
the form of (1.01) that, for ¢ in GF(p®),

Yi(et) = cdult), Vit + u) = ¥a(®) + ¥i(w);

we accordingly call (f) a linear polynomial.? As a second characteristic prop-
erty we mention

Wlat) — o) = @™ — ().
This relation suggests the study of the operator A defined by

(1.02) Af(t) = fat) — =f(@),

where f(t) is a linear polynomial. See §3.
We suppose next that & in (1.01) becomes infinite; the product II(f — E)
must be modified somewhat. Actually we consider
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the product extending over all prémary E, that is, over all polynomials in which
the coefficient of the highest power of z is the 1 element of the Galois field.
As we shall see, the question of convergence causes little difficulty; we find that
the infinite product (1.03) has the expansion
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! For the properties of Galois fields assumed here, see L. E. Dickson, Linear Groups,
1901, pp. 3-54.

2 Called p-polynomials by O. Ore, Transactions of the American Mathematical Society,
vol. 35 (1933), pp. 559-584.
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