# FROBENIUS $_{\infty}$ INVARIANTS OF HOMOTOPY GERSTENHABER ALGEBRAS, I 

S. A. MERKULOV

1. Introduction. Frobenius manifolds play a central role in the usual formulation of mirror symmetry, as may be seen in the following diagram,

| A category of compact <br> symplectic manifolds | GW |
| :---: | :---: |
| A category of <br> Frobenius manifolds | BK |
| $\longleftrightarrow$ | A category of compact <br> Calabi-Yau manifolds |

where morphisms in all categories are just diffeomorphisms preserving relevant structures, and GW and BK stand, respectively, for the Gromov-Witten (see, e.g., [Ma1]) and Barannikov-Kontsevich (see [BK] and [Ba]) functors. A pair ( $\widetilde{M}, M$ ) consisting of a symplectic manifold $\widetilde{M}$ and a Calabi-Yau manifold $M$ is said to be mirror if $\mathrm{GW}(\widetilde{M})=\mathrm{BK}(M)$. According to Kontsevich [Ko1], this equivalence is a shadow of a more fundamental equivalence of natural $A_{\infty}$-categories attached to $M$ and $\widetilde{M}$.

This paper is much motivated by the Barannikov-Kontsevich construction (see [BK] and $[\mathrm{Ba}]$ ) of the functor from the right in the above diagram, and by Manin's comments [Ma2] on their construction. The roots of the BK functor lie in the extended deformation theory of complex structures on $M$, more precisely in very special properties of the (differential) Gerstenhaber algebra $\mathfrak{g}$ "controlling" such deformations. One of the miracle features of Calabi-Yau manifolds, the one that played a key role in the BK construction, is that deformations of their complex structures are nonobstructed, always producing a smooth versal moduli space. ${ }^{1}$ In the language of Gerstenhaber algebras, the exceptional algebraic properties necessary to produce a Frobenius manifold out of $\mathfrak{g}$ have been axiomatized in [Ma1] and [Ma2]. As a result, the functor

is now well understood.

[^0]Received 11 January 2000. Revision received 8 May 2000.
2000 Mathematics Subject Classification. Primary 14D07; Secondary 14J32, 17B66, 32G13, 58D29.


[^0]:    ${ }^{1}$ A similar phenomenon occurs in the extended deformation theory of Lefschetz symplectic structures which also produces, via the same BK functor, Frobenius manifolds (see [Me1]). These should not be confused with GW.

