EXOTIC PROJECTIVE STRUCTURES AND QUASI-FUCHSIAN SPACE

KENTARO ITO

1. Introduction. Let *S* be an oriented closed surface of genus g > 1. A projective structure on *S* is a maximal system of local coordinates modeled on the Riemann sphere $\widehat{\mathbf{C}}$, whose transition functions are Möbius transformations. For a given projective structure on *S*, we have a pair (f, ρ) of a local homeomorphism *f* from the universal cover \widetilde{S} of *S* to $\widehat{\mathbf{C}}$, called a developing map, and a group homomorphism ρ of $\pi_1(S)$ into PSL₂(\mathbf{C}), called a holonomy representation. Let P(S) denote the space of all (marked) projective structures on *S*, and let V(S) denote the space of all conjugacy classes of representations of $\pi_1(S)$ into PSL₂(\mathbf{C}). Holonomy representations give a mapping hol : $P(S) \rightarrow V(S)$, which is called the holonomy mapping. It is known that the map hol is a local homeomorphism (see [13]). The quasi-Fuchsian space QF(S) is the subspace of V(S) consisting of faithful representations whose holonomy images are quasi-Fuchsian groups.

In this paper, we investigate the subset $Q(S) = \text{hol}^{-1}(QF(S))$ of P(S). We say an element of Q(S) is *standard* if its developing map is injective; otherwise, it is *exotic*. The set of standard projective structures with fixed underlying complex structure is well known as the image of the Teichmüller space under Bers embedding (see [5]). On the other hand, the existence of exotic projective structures was first shown by Maskit [21]. More investigations of exotic projective structures are found in [11], [12], [13], [25], [30], and [32]. As we see in Proposition 2.3, each connected component of Q(S) is biholomorphically isomorphic to QF(S). Moreover, as a consequence of the result of Goldman [12], the connected components of Q(S) are in one-to-one correspondence with the set $\mathcal{ML}_{\mathbb{Z}}(S)$ of integral points of measured laminations. (See Section 2.4 for a precise definition.) We denote by \mathfrak{D}_{λ} the component of Q(S) corresponding to $\lambda \in \mathcal{ML}_{\mathbb{Z}}(S)$, where \mathfrak{D}_0 is the component consisting of all standard projective structures.

Recently, McMullen [25, Appendix A] discovered the following phenomenon.

THEOREM 1.1 (McMullen). There exists a sequence of exotic projective structures that converges to a point of the relative boundary $\partial \mathfrak{D}_0 = \overline{\mathfrak{D}_0} - \mathfrak{D}_0$ of \mathfrak{D}_0 .

This phenomenon deeply depends on the following phenomenon in the theory of Kleinian groups: There is a sequence of quasi-Fuchsian groups whose algebraic limit is properly contained in the geometric limit. Such a sequence of quasi-Fuchsian

185

Received 25 August 1998. Revision received 13 December 1999.

²⁰⁰⁰ Mathematics Subject Classification. Primary 30F40; Secondary 57M50.