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ON A REFINEMENT OF WARING’S PROBLEM

VAN H. VU

§1. Introduction

§1.1. The problem and the result.In this paperN0 denotes the set of nonnegative
integers. A subsetS of N0 is a basis of orderr if every positive integer can be repre-
sented as the sum ofr elements inS. The most trivial basis isN0 itself, while the most
interesting ones are probably the sets ofkth powers (k = 2,3, . . . ). Waring’s classical
problem (first solved by Hilbert [Hil]) asserts that for any fixedk ands sufficiently
large, every positive integer can be represented as a sum ofs kth powers. For instance,
every positive integer is a sum of four squares, nine cubes, and so on. Using Hardy-
Littlewood’s circle method, one can actually estimate the number of representations.
The following theorem is classical (see [Vau] and [Nat2], for instance).

Theorem 1.1. For any fixedk ≥ 2, there is a constants1(k) such that ifs > s1(k),
thenRs

Nk
0
(n), the number of representations of n as a sum ofs kth powers, satisfies

Rs

Nk
0
(n) = �

(
ns/k−1)

for every positive integern.

Theorem 1.1 (proved by Vinogradov and also many others) shows that the set
Nk
0 of kth powers is not only a basis but also a very rich one; that is, the number

of representations ofn is huge for alln. (Theorem 1.1 also holds fork = 1 as a
trivial fact.) A natural question is whetherNk

0 contains a subsetX that is athin basis
(sometimes we callX a subbasis ofNk

0); that is, for every positive integern,R
s
X(n) is

positive butsmall. The study of thin bases was started by Rohrbach and Sidon in the
1930s and has since then attracted considerable attention from both combinatorialists
and number theorists (see [Erd], [EN], [CEN], [Ruz], [Nat1], [Zöl1], [Zöl2], [Wir],
[Spe], [ER], [ET], and [HR]).
How small? one may wonder. A very old, but still unsolved, conjecture of Erdős

and Turán [ET] states that ifX is a basis of order 2, then limsupn→∞ R2
X(n) = ∞.

Since this conjecture is commonly believed to be true even for arbitrary order, the best
we can hope for is to prove that there existsX ⊂Nk

0 such thatR
s
X(n) is a positive but

slowly increasing function inn. The objective of this paper is to prove the following
theorem.
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