ON A REFINEMENT OF WARING'S PROBLEM

VAN H. VU

§1. Introduction

§1.1. The problem and the result. In this paper \mathbb{N}_{0} denotes the set of nonnegative integers. A subset S of \mathbb{N}_{0} is a basis of order r if every positive integer can be represented as the sum of r elements in S. The most trivial basis is \mathbb{N}_{0} itself, while the most interesting ones are probably the sets of k th powers $(k=2,3, \ldots)$. Waring's classical problem (first solved by Hilbert [Hil]) asserts that for any fixed k and s sufficiently large, every positive integer can be represented as a sum of $s k$ th powers. For instance, every positive integer is a sum of four squares, nine cubes, and so on. Using HardyLittlewood's circle method, one can actually estimate the number of representations. The following theorem is classical (see [Vau] and [Nat2], for instance).

Theorem 1.1. For any fixed $k \geq 2$, there is a constant $s_{1}(k)$ such that if $s>s_{1}(k)$, then $R_{\mathbb{N}_{0}^{k}}^{s}(n)$, the number of representations of n as a sum of $s k t h$ powers, satisfies

$$
R_{\mathbb{N}_{0}^{k}}^{s}(n)=\Theta\left(n^{s / k-1}\right)
$$

for every positive integer n.
Theorem 1.1 (proved by Vinogradov and also many others) shows that the set \mathbb{N}_{0}^{k} of k th powers is not only a basis but also a very rich one; that is, the number of representations of n is huge for all n. (Theorem 1.1 also holds for $k=1$ as a trivial fact.) A natural question is whether \mathbb{N}_{0}^{k} contains a subset X that is a thin basis (sometimes we call X a subbasis of \mathbb{N}_{0}^{k}); that is, for every positive integer $n, R_{X}^{s}(n)$ is positive but small. The study of thin bases was started by Rohrbach and Sidon in the 1930s and has since then attracted considerable attention from both combinatorialists and number theorists (see [Erd], [EN], [CEN], [Ruz], [Nat1], [Zöl1], [Zöl2], [Wir], [Spe], [ER], [ET], and [HR]).

How small? one may wonder. A very old, but still unsolved, conjecture of Erdős and Turán [ET] states that if X is a basis of order 2 , then $\limsup _{n \rightarrow \infty} R_{X}^{2}(n)=\infty$. Since this conjecture is commonly believed to be true even for arbitrary order, the best we can hope for is to prove that there exists $X \subset \mathbb{N}_{0}^{k}$ such that $R_{X}^{s}(n)$ is a positive but slowly increasing function in n. The objective of this paper is to prove the following theorem.

Received 25 May 1999. Revision received 24 January 2000.
2000 Mathematics Subject Classification. Primary 11P05; Secondary 05D40.
Author's work supported by a grant from the state of New Jersey.

