AN ANALOGUE OF SERRE'S CONJECTURE FOR GALOIS REPRESENTATIONS AND HECKE EIGENCLASSES IN THE mod p COHOMOLOGY OF $GL(n, \mathbb{Z})$

AVNER ASH AND WARREN SINNOTT

1. Introduction. Let p be a prime number and \mathbb{F} an algebraic closure of the finite field \mathbb{F}_p with p elements. Let n and N denote positive integers, N prime to p. We are interested in representations p of the Galois group $G_{\mathbb{Q}} = \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ into $\operatorname{GL}(n,\mathbb{F})$, unramified at all finite primes not dividing pN. (We shall say p is unramified outside pN.) In this paper, *representation* will always mean continuous, semisimple representation.

We choose for each prime l not dividing pN a Frobenius element Frob_l in $G_{\mathbb{Q}}$. We also fix a complex conjugation $\operatorname{Frob}_{\infty} \in G_{\mathbb{Q}}$. For every prime q, we fix a decomposition group G_q with its filtration by its ramification subgroups $G_{q,i}$. We denote the whole inertia group $G_{q,0}$ by I_q .

Our aim is to make a conjecture about when such a representation should be attached to a cohomology class of a congruence subgroup of level N of $GL(n, \mathbb{Z})$. Then we exhibit such evidence for the conjecture as we are able.

Set $\Gamma_0(N)$ to be the subgroup of $SL(n, \mathbb{Z})$ consisting of those matrices whose first row is congruent to (*, 0, ..., 0) modulo N. Let S_N be the subsemigroup of the integral matrices in $GL(n, \mathbb{Q})$ whose first row is congruent to (*, 0, ..., 0) modulo N and with determinant positive and prime to N.

We denote by $\mathcal{H}(N)$ the \mathbb{F} -algebra of double cosets $\Gamma_0(N)S_N\Gamma_0(N)$. It is commutative. This algebra acts on the cohomology and homology of $\Gamma_0(N)$ with any coefficient $\mathbb{F}S_N$ -module. When a double coset is acting on cohomology, we call it a *Hecke operator*. The Hecke algebra $\mathcal{H}(N)$ contains all double cosets of the form $\Gamma_0(N)D(l,k)\Gamma_0(N)$, where D(l,k) is the diagonal matrix with k l's followed by (n-k) l's, and l is a prime not dividing N. We use the notation T(l,k) for the corresponding Hecke operator.

Definition 1.1. Let \mathcal{V} be an $\mathcal{H}(pN)$ -module, and suppose $v \in \mathcal{V}$ is an eigenvector for the action of $\mathcal{H}(pN)$ with T(l,k)v = a(l,k)v for some $a(l,k) \in \mathbb{F}$, for all $k = 0, \ldots, n$, and for all l prime to pN. Let ρ be a representation $\rho: G_{\mathbb{Q}} \to \mathrm{GL}(n,\mathbb{F})$

Received 2 June 1999. Revision received 12 November 1999. 2000 *Mathematics Subject Classification*. Primary 11F80; Secondary 11F75. Ash's research partially supported by National Science Foundation grant DMS-9531675.

1