DIFFERENTIABILITY PROPERTIES OF ISOTROPIC FUNCTIONS

MIROSLAV ŠILHAVÝ

1. Introduction. Let Sym denote the linear space of all symmetric second-order tensors on an n-dimensional real vector space Vect with scalar product. (If Vect is identified with R^{n}, then Sym may be identified with the set of all symmetric n-by- n matrices.) A function $f: \operatorname{Sym} \rightarrow \mathrm{R}$ is said to be isotropic if $f(\mathbf{A})=f\left(\mathbf{Q A} \mathbf{Q}^{T}\right)$ for all $\mathbf{A} \in \operatorname{Sym}_{\tilde{f}}$ and all \mathbf{Q} proper orthogonals. An isotropic function has a representation $f(\mathbf{A})=\tilde{f}(a)$, where \tilde{f} is a symmetric function on R^{n} and $a=\left(a_{1}, \ldots, a_{n}\right)$ are the eigenvalues of \mathbf{A} with appropriate multiplicities. Clearly, $\tilde{f}(a)=f(\operatorname{diag}(a))$ in any orthonormal basis, and thus if f is of class $C^{r}, r=0,1, \ldots, \infty$, then also \tilde{f} is of class C^{r}. Ball [1] showed that for $r=0,1,2, \infty$, the converse is also true and conjectured that the converse is true for all r. This was subsequently proved by Sylvester [6] using complex techniques and detailed estimates of the derivatives of eigenvalues. Earlier, Chadwick and Ogden [2], [3] gave formulas for $D^{r} f, r=1,2,3$, in terms of \tilde{f} and its derivatives assuming the differentiability (see also [1]). In this note, I derive the result of Sylvester by elementary means and give a recursive formula for $D^{r} f$ in terms of \tilde{f} for arbitrary r. I also specialize these formulas to derive the forms of $D^{r} f, r=1,2,3$, which are equivalent to those by Chadwick and Ogden.
2. Notation. Throughout, the indices i, j, k range the interval $\{1, \ldots, n\}$, unless stated otherwise. The direct vector notation is used in [4], [5]. In addition to the notation explained in the introduction, we recall that a second-order tensor \mathbf{A} is a linear transformation from Vect into Vect, with the product of two tensors being the composition of the linear transformations. Furthermore, Orth ${ }^{+}$denotes the proper orthogonal group, and Skew denotes the set of all skew tensors. By a basis in Vect, we always mean an orthonormal basis. Let S_{n} be the set of all real symmetric n-by- n matrices. Let e_{i} be the canonical basis in R^{r}. All vector spaces are finite-dimensional and real.

For a vector space X , we denote by $\mathrm{F}^{r}(\mathrm{X})$ the vector space of all symmetric r linear forms $F: \mathrm{X} \times \cdots \times \mathrm{X} \rightarrow \mathrm{R}$ on X . The direct notation is used to denote the derivatives (differentials) of functions f defined on a vector space X with values in R. Thus for $x \in \mathrm{X}$, the r th derivative $D^{r} f(x)$ is a symmetric r-form on X ; that is,

