DIFFERENTIABILITY PROPERTIES OF ISOTROPIC FUNCTIONS

MIROSLAV ŠILHAVÝ

- **1. Introduction.** Let Sym denote the linear space of all symmetric second-order tensors on an n-dimensional real vector space Vect with scalar product. (If Vect is identified with \mathbb{R}^n , then Sym may be identified with the set of all symmetric n-by-n matrices.) A function $f: Sym \to R$ is said to be isotropic if $f(A) = f(QAQ^T)$ for all $A \in Sym$ and all Q proper orthogonals. An isotropic function has a representation $f(\mathbf{A}) = \tilde{f}(a)$, where \tilde{f} is a symmetric function on \mathbb{R}^n and $a = (a_1, \dots, a_n)$ are the eigenvalues of **A** with appropriate multiplicities. Clearly, $\tilde{f}(a) = f(\text{diag}(a))$ in any orthonormal basis, and thus if f is of class C^r , $r = 0, 1, ..., \infty$, then also \tilde{f} is of class C^r . Ball [1] showed that for $r = 0, 1, 2, \infty$, the converse is also true and conjectured that the converse is true for all r. This was subsequently proved by Sylvester [6] using complex techniques and detailed estimates of the derivatives of eigenvalues. Earlier, Chadwick and Ogden [2], [3] gave formulas for $D^r f$, r = 1, 2, 3, in terms of \tilde{f} and its derivatives assuming the differentiability (see also [1]). In this note, I derive the result of Sylvester by elementary means and give a recursive formula for $D^r f$ in terms of \tilde{f} for arbitrary r. I also specialize these formulas to derive the forms of $D^r f$, r = 1, 2, 3, which are equivalent to those by Chadwick and Ogden.
- **2. Notation.** Throughout, the indices i, j, k range the interval $\{1, ..., n\}$, unless stated otherwise. The direct vector notation is used in [4], [5]. In addition to the notation explained in the introduction, we recall that a second-order tensor \mathbf{A} is a linear transformation from Vect into Vect, with the product of two tensors being the composition of the linear transformations. Furthermore, Orth⁺ denotes the proper orthogonal group, and Skew denotes the set of all skew tensors. By a basis in Vect, we always mean an orthonormal basis. Let \mathbf{S}_n be the set of all real symmetric n-by-n matrices. Let e_i be the canonical basis in \mathbf{R}^r . All vector spaces are finite-dimensional and real.

For a vector space X, we denote by $F^r(X)$ the vector space of all symmetric r-linear forms $F: X \times \cdots \times X \to R$ on X. The direct notation is used to denote the derivatives (differentials) of functions f defined on a vector space X with values in R. Thus for $x \in X$, the rth derivative $D^r f(x)$ is a symmetric r-form on X; that is,

Received 19 May 1999. Revision received 3 June 1999. 2000 *Mathematics Subject Classification*. Primary 74A20; Secondary 74B99. Author's work supported by grant number 201/00/1516 of the Grant Agency of the Czech Republic.