ON THE SET-THEORETICAL YANG-BAXTER EQUATION

JIANG-HUA LU, MIN YAN, and YONG-CHANG ZHU

1. Introduction. Let V be a vector space. Let $R: V \otimes V \rightarrow V \otimes V$ be an invertible linear transformation. The Yang-Baxter equation is the equality

$$
\begin{equation*}
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} \tag{1}
\end{equation*}
$$

of linear transformations on $V \otimes V \otimes V$.
Denote $\tau(w \otimes v)=v \otimes w: V \otimes V \rightarrow V \otimes V$ and $\sigma=\tau \circ R$. Then (1) is equivalent to the braid relation

$$
\begin{equation*}
\sigma_{12} \sigma_{23} \sigma_{12}=\sigma_{23} \sigma_{12} \sigma_{23} \tag{2}
\end{equation*}
$$

Because of this, a solution of (1) gives rise to a linear representation of the braid group B_{n} on $V^{\otimes n}$ for every n.

In [D], Drinfel'd raised the question of finding set-theoretical solutions of the YangBaxter equation. Specifically, we consider a set S and an invertible map $R: S \times S \rightarrow$ $S \times S$. We think of the Yang-Baxter equation (1) as an equality of maps from $S \times S \times S$ to $S \times S \times S$. As in the linear case, a solution of (1) on a set S gives rise to an action of B_{n} on the set S^{n}.

By studying Poisson groups, Weinstein and Xu [WX] found a way of constructing set-theoretical solutions of the Yang-Baxter equation. Later on, Etingof, Schedler, and Soloviev [ESS] gave a complete classification of the nondegenerate set-theoretical solutions R of the Yang-Baxter equation satisfying $(\tau \circ R)^{2}=\mathrm{id}$ (where $\tau(w, v)=$ (v, w)).

In this paper, we present the following construction of set-theoretical solutions of the Yang-Baxter equation.

Theorem 1. Let G be a group. Let ξ and η be left and right actions of G on itself, denoted by $(u, v) \mapsto{ }^{\xi(u)} v$ and $(u, v) \mapsto u^{\eta(v)}$, respectively. If the two actions satisfy the compatibility condition

$$
\begin{equation*}
u v=\left({ }^{\xi(u)} v\right)\left(u^{\eta(v)}\right) \tag{3}
\end{equation*}
$$

Received 24 August 1999.
2000 Mathematics Subject Classification. Primary 16W30, 81R50; Secondary 57M25.
Lu's research partially supported by a National Science Foundation postdoctoral fellowship and by National Science Foundation grant number DMS-9803624.

Yan's research supported by Research Grant Council earmark grant number HKUST 6071/98P.
Zhu's research supported by Research Grant Council earmark grant number HKUST 629/95P.

