A REMARK ON THE ENERGY BLOW-UP BEHAVIOR FOR NONLINEAR HEAT EQUATIONS

HATEM ZAAG

1. Introduction. We are concerned with finite-time blow-up for the following nonlinear heat equation:

$$\begin{cases} u_t = \Delta u + |u|^{p-1}u & \text{in } \Omega \times [0, T), \\ u = 0 & \text{on } \partial \Omega \times [0, T) \end{cases}$$
(1)

with $u(x, 0) = u_0(x)$, where $u : \Omega \times [0, T) \to \mathbb{R}$, Ω is a $C^{2,\alpha}$ -convex bounded domain of \mathbb{R}^N , $u_0 \in L^{\infty}(\Omega)$. We assume that the following condition holds:

$$1 < p,$$
 $(N-2)p < N+2,$ and $\left(u_0 \ge 0 \text{ or } p < \frac{3N+8}{3N-4}\right).$ (2)

Therefore, p+1 > N(p-1)/2 and the (local in time) Cauchy problem for (1) can be solved in $L^{p+1}(\Omega)$ (see, for instance, [21, Theorem 3]). If the maximum existence time T > 0 is finite, then u(t) is said to blow up in finite time, and in this case

$$\lim_{t \to T} \|u(t)\|_{L^{p+1}(\Omega)} = \lim_{t \to T} \|u(t)\|_{L^{\infty}(\Omega)} = +\infty$$
(3)

(see [21, Corollary 3.2]). We consider such a blow-up solution u(t) in the following.

From the regularizing effect of the Laplacian, $u(t) \in L^{\infty} \cap H_0^1(\Omega)$ for all $t \in (0, T)$. We take $||u||_{H_0^1(\Omega)}^2 = \int_{\Omega} |\nabla u|^2 dx$. Using the Sobolev embedding and the fact that p is subcritical (p < (N+2)/(N-2) if $N \ge 3)$, we see that $H_0^1(\Omega) \subset L^{p+1}(\Omega)$. Therefore, (3) implies that

$$\lim_{t \to T} \|u(t)\|_{H^1_0(\Omega)} = +\infty.$$

A point $a \in \Omega$ is called a blow-up point of u if there exists $(a_n, t_n) \to (a, T)$ such that $|u(a_n, t_n)| \to +\infty$.

The set of all blow-up points of u(t) is called the blow-up set and denoted by S. From Giga and Kohn [8, Theorem 5.3], there are no blow-up points in $\partial \Omega$. Therefore, we see from (3) and the boundedness of Ω that S is not empty.

Many papers are concerned with the Cauchy problem for (1) (see, for instance, [21]) or the problem of finding sufficient blow-up conditions on the initial data (see

Received 15 September 1998. Revision received 2 December 1999. 2000 Mathematics Subject Classification. Primary 35K20, 35K55, 35A20.

545