ARRANGEMENT OF HYPERPLANES, II: THE SZENES FORMULA AND EISENSTEIN SERIES

MICHEL BRION and MICHÈLE VERGNE

To Victor Guillemin, for his 60th birthday

1. Introduction. Consider a sequence $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ of linear forms in r complex variables, with integral coefficients. The linear forms α_{j} need not be distinct. For example, $r=2$ and $\alpha_{1}=\alpha_{2}=z_{1}, \alpha_{3}=\alpha_{4}=z_{2}, \alpha_{5}=\alpha_{6}=z_{1}+z_{2}$. For any such sequence, D. Zagier [5] introduced the series

$$
\sum_{n \in \mathbb{Z}^{r},\left\langle\alpha_{j}, n\right\rangle \neq 0} \frac{1}{\prod_{j=1}^{k}\left\langle\alpha_{j}, n\right\rangle}
$$

Assuming convergence, its sum is a rational multiple of π^{k}. For example (see [5]), we have

$$
\sum_{n_{1} \neq 0, n_{2} \neq 0, n_{1}+n_{2} \neq 0} \frac{1}{n_{1}^{2} n_{2}^{2}\left(n_{1}+n_{2}\right)^{2}}=\frac{(2 \pi)^{6}}{30240}
$$

These numbers are natural multidimensional generalizations of the value of the Riemann zeta function at even integers. A. Szenes gave in [3, Theorem 4.4] a residue formula for these numbers, relating them to Bernoulli numbers. The formula of Szenes [3] is the multidimensional analogue of the residue formula

$$
\sum_{n \neq 0} \frac{1}{n^{2 l}}=(2 \pi)^{2 l} \frac{B_{2 l}}{(2 l)!}=(-1)^{l}(2 \pi)^{2 l} \operatorname{Res}_{z=0}\left(\frac{1}{z^{2 l}\left(1-e^{z}\right)}\right)
$$

A motivation for computing such sums comes from the work of E. Witten [4]. In the special case where α_{j} are the positive roots of a compact connected Lie group G, each of these roots being repeated with multiplicity $2 g-2$, Witten expressed the symplectic volume of the space of homomorphisms of the fundamental group of a Riemann surface of genus g into G, in terms of these sums. In [2], L. Jeffrey and F. Kirwan proved a special case of the Szenes formula leading to the explicit computation of this symplectic volume, when G is $\mathrm{SU}(n)$.

Our interest in such series comes from a different motivation. Let us consider first the 1 -dimensional case. By the Poisson formula, for $\operatorname{Re}(z)>0$, the convergent series $\sum_{m=1}^{\infty} m e^{-m z}$ is also equal to $\sum_{n \in \mathbb{Z}} 1 /(z+2 i \pi n)^{2}$. Similarly, sums of products

2000 Mathematics Subject Classification. Primary 52C35; Secondary 11B68, 40H05.

