ANALOGS OF WIENER'S ERGODIC THEOREMS FOR SEMISIMPLE LIE GROUPS, II

G. A. MARGULIS, A. NEVO, and E. M. STEIN

§0. Introduction. Given a measure-preserving action $T_{v}: X \rightarrow X, v \in \mathbb{R}^{d}$ of the group $G=\mathbb{R}^{d}$ on a probability space (X, m), and a function $f \in L^{1}(X)$, consider the averaging operators

$$
\pi\left(\beta_{t}\right) f(x)=\frac{1}{\operatorname{vol} B_{t}} \int_{v \in B_{t}} f\left(T_{v} x\right) d v
$$

where $B_{t}=\left\{v \in \mathbb{R}^{d},\|v\| \leq t\right\}$.
Wiener's pointwise ergodic theorem asserts that $\pi\left(\beta_{t}\right) f(x)$ converges to a limit as $t \rightarrow \infty$ for almost every $x \in X$. The limit is given by the average of f on X, namely, $\int_{X} f d m$, provided the action is ergodic. The main tool used in the proof of this result is Wiener's maximal inequality, which asserts that the maximal function $f_{\beta}^{*}(x)=\sup _{t>0}\left|\pi\left(\beta_{t}\right) f(x)\right|$ satisfies $m\left\{x: f_{\beta}^{*}(x) \geq \delta\right\} \leq(C / \delta)\|f\|_{L^{1}(X)}$.

Consider the following generalization of the foregoing setup. Let G be a connected Lie group G, and let K be a compact subgroup. Assume there exists a G-invariant Riemannian metric on the homogeneous space $S=G / K$. The (bi- K-invariant) ball averages β_{t} on G are defined to be the probability measures

$$
\beta_{t}=\frac{1}{m_{G}\left(B_{t}\right)} \int_{g \in B_{t}} \delta_{g} d m_{G}(g)
$$

where m_{G} is a left-invariant Haar measure on $G, B_{t}=\{g \in G \mid d(g K, K) \leq t\}, d$ is the Riemmanian distance on $S=G / K$, and δ_{g} is the delta measure at $g . \beta_{t}$ give rise to canonical averaging operators, denoted $\pi\left(\beta_{t}\right)$, in every measure-preserving action of G. We can now formulate the following problem.

Ball averaging problem. Determine whether, for any ergodic measurepreserving action of G on a probability space (X, m), the averaging operators $\pi\left(\beta_{t}\right) f(x)$ converge to $\int_{X} f d m$, for $f \in L^{1}(X)$, or at least for $f \in L^{p}(X), p>1$. Also, determine whether the maximal inequality $\left\|f_{\beta}^{*}\right\|_{L^{p}(X)} \leq C_{p}\|f\|_{L^{p}(X)}$ holds.

Received 13 May 1999. Revision received 12 November 1999.
2000 Mathematics Subject Classification. Primary 22D40, 22E30, 28D10; Secondary 43A10, 43 A 90 .

Margulis partially supported by National Science Foundation grant numbers DMS-9424613 and DMS-9800607.

Stein partially supported by National Science Foundation grant number DMS-9706889.

