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ANALYTIC STRATIFICATION IN THE PFAFFIAN CLOSURE OF
AN O-MINIMAL STRUCTURE

JEAN-MARIE LION and PATRICK SPEISSEGGER

Introduction. Let U ⊆ Rn be open andω = a1dx1+·· ·+andxn a nonsingular,
integrable 1-form onU of classC1, and let� be the foliation onU associated toω.
A leafL ⊆ U of � is aRolle leaf if anyC1 curveγ : [0,1] → U with γ (0),γ (1) ∈ L

is tangent to� at some point, that is,ω(γ (t))(γ ′(t)) = 0 for somet ∈ [0,1]. Note
that while a leaf of� is in general only an immersed manifold, any Rolle leaf of�
is an embedded and closed submanifold ofU .
Throughout this paper, we fix an arbitrary o-minimal expansionR̃ of the field of

real numbers. WheneverU and a1, . . . ,an are definable iñR , then a leaf of� is
called a leafover R̃ . We useR̃1 to denote the expansion of̃R by all Rolle leaves
over R̃ .
For example, the expansionRan of the real field generated by all globally semi-

analytic sets is o-minimal; in fact the sets definable inRan are exactly the globally
subanalytic sets (see [7], [4]). Building on Khovanskiı̆’s theory of fewnomials [10] and
subsequent work by Moussu and Roche [14], Lion and Rolin [12] showed that(Ran)1
is also o-minimal. Adapting the various ideas involved to the general o-minimal set-
ting, Speissegger [15] proved the following statement.

Fact. The structurẽR1 is o-minimal.

The o-minimal structurẽR is said toadmit analytic cell decompositionif, for any
finite collectionA1, . . . ,Ak ⊆Rn of sets definable iñR , there is a decomposition�
of Rn into finitely many analytic cells definable iñR , such that eachAi is a union
of cells in�. In this paper we establish the following statement.

Theorem. If R̃ admits analytic cell decomposition, then so doesR̃1.

We assume that the reader is familiar with the terminology introduced in [6] (for
instance, “Ck cell,” “cell decomposition,” “Whitney stratification,” etc.). By the gen-
eral results on o-minimal expansions of the real field described there, the theorem can
be restated as follows, thereby generalizing the results obtained by Cano, Lion and
Moussu in [3].
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