ANALYTIC STRATIFICATION IN THE PFAFFIAN CLOSURE OF AN O-MINIMAL STRUCTURE

JEAN-MARIE LION and PATRICK SPEISSEGGER

Introduction. Let $U \subseteq \mathbb{R}^{n}$ be open and $\omega=a_{1} d x_{1}+\cdots+a_{n} d x_{n}$ a nonsingular, integrable 1-form on U of class C^{1}, and let \mathscr{F} be the foliation on U associated to ω. A leaf $L \subseteq U$ of \mathscr{F} is a Rolle leaf if any C^{1} curve $\gamma:[0,1] \rightarrow U$ with $\gamma(0), \gamma(1) \in L$ is tangent to \mathscr{F} at some point, that is, $\omega(\gamma(t))\left(\gamma^{\prime}(t)\right)=0$ for some $t \in[0,1]$. Note that while a leaf of \mathscr{F} is in general only an immersed manifold, any Rolle leaf of \mathscr{F} is an embedded and closed submanifold of U.

Throughout this paper, we fix an arbitrary o-minimal expansion $\widetilde{\mathbb{R}}$ of the field of real numbers. Whenever U and a_{1}, \ldots, a_{n} are definable in $\widetilde{\mathbb{R}}$, then a leaf of \mathscr{F} is called a leaf over $\widetilde{\mathbb{R}}$. We use $\widetilde{\mathbb{R}}_{1}$ to denote the expansion of $\widetilde{\mathbb{R}}$ by all Rolle leaves over $\widetilde{\mathbb{R}}$.

For example, the expansion $\mathbb{R}_{\text {an }}$ of the real field generated by all globally semianalytic sets is o-minimal; in fact the sets definable in $\mathbb{R}_{\text {an }}$ are exactly the globally subanalytic sets (see [7], [4]). Building on Khovanskiǔ's theory of fewnomials [10] and subsequent work by Moussu and Roche [14], Lion and Rolin [12] showed that $\left(\mathbb{R}_{\text {an }}\right)_{1}$ is also o-minimal. Adapting the various ideas involved to the general o-minimal setting, Speissegger [15] proved the following statement.

Fact. The structure $\widetilde{\mathbb{R}}_{1}$ is o-minimal.
The o-minimal structure $\widetilde{\mathbb{R}}$ is said to admit analytic cell decomposition if, for any finite collection $A_{1}, \ldots, A_{k} \subseteq \mathbb{R}^{n}$ of sets definable in $\widetilde{\mathbb{R}}$, there is a decomposition Γ of \mathbb{R}^{n} into finitely many analytic cells definable in $\widetilde{\mathbb{R}}$, such that each A_{i} is a union of cells in Γ. In this paper we establish the following statement.

Theorem. If $\widetilde{\mathbb{R}}$ admits analytic cell decomposition, then so does $\widetilde{\mathbb{R}}_{1}$.
We assume that the reader is familiar with the terminology introduced in [6] (for instance, " C^{k} cell," "cell decomposition," "Whitney stratification," etc.). By the general results on o-minimal expansions of the real field described there, the theorem can be restated as follows, thereby generalizing the results obtained by Cano, Lion and Moussu in [3].

[^0]
[^0]: Received 30 October 1998. Revision received 19 September 1999
 2000 Mathematics Subject Classification. Primary 14P10, 58A17; Secondary 03C98.
 Authors partially supported by Centre National de la Recherche Scientifique, Mathematical Sciences Research Institute, Natural Sciences and Engineering Research Council of Canada, and Swiss Academy of Engineering Sciences.

