ANALYTIC STRATIFICATION IN THE PFAFFIAN CLOSURE OF AN O-MINIMAL STRUCTURE

JEAN-MARIE LION AND PATRICK SPEISSEGGER

Introduction. Let $U \subseteq \mathbb{R}^n$ be open and $\omega = a_1 dx_1 + \dots + a_n dx_n$ a nonsingular, integrable 1-form on U of class C^1 , and let \mathcal{F} be the foliation on U associated to ω . A leaf $L \subseteq U$ of \mathcal{F} is a *Rolle leaf* if any C^1 curve $\gamma : [0, 1] \to U$ with $\gamma(0), \gamma(1) \in L$ is tangent to \mathcal{F} at some point, that is, $\omega(\gamma(t))(\gamma'(t)) = 0$ for some $t \in [0, 1]$. Note that while a leaf of \mathcal{F} is in general only an immersed manifold, any Rolle leaf of \mathcal{F} is an embedded and closed submanifold of U.

Throughout this paper, we fix an arbitrary o-minimal expansion \mathbb{R} of the field of real numbers. Whenever U and a_1, \ldots, a_n are definable in \mathbb{R} , then a leaf of \mathcal{F} is called a leaf *over* \mathbb{R} . We use \mathbb{R}_1 to denote the expansion of \mathbb{R} by all Rolle leaves over \mathbb{R} .

For example, the expansion \mathbb{R}_{an} of the real field generated by all globally semianalytic sets is o-minimal; in fact the sets definable in \mathbb{R}_{an} are exactly the globally subanalytic sets (see [7], [4]). Building on Khovanskii's theory of fewnomials [10] and subsequent work by Moussu and Roche [14], Lion and Rolin [12] showed that $(\mathbb{R}_{an})_1$ is also o-minimal. Adapting the various ideas involved to the general o-minimal setting, Speissegger [15] proved the following statement.

FACT. The structure $\widetilde{\mathbb{R}}_1$ is o-minimal.

The o-minimal structure $\widetilde{\mathbb{R}}$ is said to *admit analytic cell decomposition* if, for any finite collection $A_1, \ldots, A_k \subseteq \mathbb{R}^n$ of sets definable in $\widetilde{\mathbb{R}}$, there is a decomposition Γ of \mathbb{R}^n into finitely many analytic cells definable in $\widetilde{\mathbb{R}}$, such that each A_i is a union of cells in Γ . In this paper we establish the following statement.

THEOREM. If $\widetilde{\mathbb{R}}$ admits analytic cell decomposition, then so does $\widetilde{\mathbb{R}}_1$.

We assume that the reader is familiar with the terminology introduced in [6] (for instance, " C^k cell," "cell decomposition," "Whitney stratification," etc.). By the general results on o-minimal expansions of the real field described there, the theorem can be restated as follows, thereby generalizing the results obtained by Cano, Lion and Moussu in [3].

Received 30 October 1998. Revision received 19 September 1999.

2000 Mathematics Subject Classification. Primary 14P10, 58A17; Secondary 03C98.

Authors partially supported by Centre National de la Recherche Scientifique, Mathematical Sciences Research Institute, Natural Sciences and Engineering Research Council of Canada, and Swiss Academy of Engineering Sciences.

