DISTRIBUTION OF ALMOST DIVISION POINTS

SHOU-WU ZHANG

1. Introduction. In [10], we proved an equidistribution theorem for small points on abelian varieties, based on the ideas in [7] and [8]. In this paper, we want to generalize this result to almost division points. In the following, we describe our main theorem and its application to the discreteness of almost division points on subvarieties.

Let A be an abelian variety defined over a number field K. Let $x_{n}(n \in \mathbb{N})$ be a sequence of distinct points in $A(\bar{K})$. We assume this is a sequence of almost division points, which means

$$
\lim _{n \rightarrow \infty} \sup _{\sigma \in G}\left\|x_{n}^{\sigma}-x_{n}\right\|=0
$$

Here, $G=\operatorname{Gal}(\bar{K} / K)$, and $\|\cdot\|$ is the square root of the Neron-Tate height function, with respect to some ample and symmetric line bundle on A. Obviously, the notion of almost division does not depend on the choice of the Neron-Tate height functions. If we drop the limit in the above equality, then all x_{n} are division points for $A(K)$.

We fix an embedding $\sigma: \bar{K} \rightarrow \mathbb{C}$; then $A(\bar{K})$ can be considered a subgroup of $A(\mathbb{C}):=A_{\sigma}(\mathbb{C})$. The Galois orbits x_{n}^{G} therefore define a sequence δx_{n}^{G} of probability measures on $A(\mathbb{C})$; if f is a continuous function on $A(\mathbb{C})$, then

$$
\int_{A(\mathbb{C})} f \delta x_{n}^{G}=\frac{1}{\left|x_{n}^{G}\right|} \sum_{y \in x_{n}^{G}} f(y)
$$

In this paper, we address the convergence of δx_{n}^{G}. More precisely, we want to know whether there is a measure $d \mu$ on $A(\mathbb{C})$ such that, for any continuous function f on $A(\mathbb{C})$,

$$
\lim _{n \rightarrow \infty} \int_{A(\mathbb{C})} f d x_{n}^{G}=\int_{A(\mathbb{C})} f d \mu
$$

Obviously, such a measure $d \mu$ does not exist in general; but, since the space of the continuous functions on $A(\mathbb{C})$ can be topologically generated by countably many functions, $d \mu$ does exist if $\left(x_{n}, n \in \mathbb{N}\right)$ is replaced with a subsequence. So, our purpose becomes to describe the following:

- the property of the sequence $\left(x_{n}, n \in \mathbb{N}\right)$ which can be obtained by replacing it with a subsequence;

Received 5 November 1998. Revision received 9 June 1999.
2000 Mathematics Subject Classification. Primary 11G, 14G.
This research was supported by National Science Foundation grant number DMS-9796021 and by a Sloan Research Fellowship.

