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ORTHONORMAL BASES OF EXPONENTIALS
FOR THEn-CUBE

JEFFREY C. LAGARIAS, JAMES A. REEDS,and YANG WANG

1. Introduction. A compact set� in Rn of positive Lebesgue measure is a spec-
tral set if there is some set of exponentials

�� := {
e2πi〈λ,x〉 : λ ∈�}, (1.1)

which when restricted to� gives an orthogonal basis forL2(�), with respect to the
inner product

〈f,g〉� :=
∫
�

f (x)g(x)dx. (1.2)

Any set� that gives such an orthogonal basis is called a spectrum for�. Only very
special sets� in Rn are spectral sets. However, when a spectrum exists, it can be
viewed as a generalization of Fourier series, because for then-cube� = [0,1]n the
spectrum�= Zn gives the standard Fourier basis ofL2([0,1]n).
The main object of this paper is to relate the spectra of sets� to tilings in Fourier

space. We develop such a relation for a large class of sets and apply it to geometrically
characterize all spectra for then-cube�= [0,1]n.
Theorem 1.1. The following conditions on a set� in Rn are equivalent.
(i) The set�� = {e2πi〈λ,x〉 : λ ∈�} when restricted to[0,1]n is an orthonormal

basis ofL2([0,1]n).
(ii) The collection of sets{λ+[0,1]n : λ ∈ �} is a tiling ofRn by translates of

unit cubes.

This result was conjectured by Jorgensen and Pedersen [6], who proved it in di-
mensionsn ≤ 3. We note that in high dimensions there are many “exotic” cube
tilings. There are aperiodic cube tilings in all dimensionsn≥ 3, while in dimensions
n ≥ 10 there are cube tilings in which no two cubes share a common(n−1)-face;
see Lagarias and Shor [9].
In Theorem 1.1, then-cube[0,1]n appears in both conditions (i) and (ii), but in

functorially different contexts. Then-cube in (i) lies in the space domainRn while
then-cube in (ii) lies in the Fourier domain(Rn)∗, so they transform differently under
linear change of variables. Thus Theorem 1.1 is equivalent to the following result.
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