ORTHONORMAL BASES OF EXPONENTIALS FOR THE n-CUBE

JEFFREY C. LAGARIAS, JAMES A. REEDS, and YANG WANG

1. Introduction. A compact set Ω in \mathbb{R}^{n} of positive Lebesgue measure is a spectral set if there is some set of exponentials

$$
\begin{equation*}
\mathscr{B}_{\Lambda}:=\left\{e^{2 \pi i\langle\lambda, x\rangle}: \lambda \in \Lambda\right\}, \tag{1.1}
\end{equation*}
$$

which when restricted to Ω gives an orthogonal basis for $L^{2}(\Omega)$, with respect to the inner product

$$
\begin{equation*}
\langle f, g\rangle_{\Omega}:=\int_{\Omega} \overline{f(x)} g(x) d x \tag{1.2}
\end{equation*}
$$

Any set Λ that gives such an orthogonal basis is called a spectrum for Ω. Only very special sets Ω in \mathbb{R}^{n} are spectral sets. However, when a spectrum exists, it can be viewed as a generalization of Fourier series, because for the n-cube $\Omega=[0,1]^{n}$ the spectrum $\Lambda=\mathbb{Z}^{n}$ gives the standard Fourier basis of $L^{2}\left([0,1]^{n}\right)$.

The main object of this paper is to relate the spectra of sets Ω to tilings in Fourier space. We develop such a relation for a large class of sets and apply it to geometrically characterize all spectra for the n-cube $\Omega=[0,1]^{n}$.

Theorem 1.1. The following conditions on a set Λ in \mathbb{R}^{n} are equivalent.
(i) The set $\mathscr{B}_{\Lambda}=\left\{e^{2 \pi i\langle\lambda, x\rangle}: \lambda \in \Lambda\right\}$ when restricted to $[0,1]^{n}$ is an orthonormal basis of $L^{2}\left([0,1]^{n}\right)$.
(ii) The collection of sets $\left\{\lambda+[0,1]^{n}: \lambda \in \Lambda\right\}$ is a tiling of \mathbb{R}^{n} by translates of unit cubes.

This result was conjectured by Jorgensen and Pedersen [6], who proved it in dimensions $n \leq 3$. We note that in high dimensions there are many "exotic" cube tilings. There are aperiodic cube tilings in all dimensions $n \geq 3$, while in dimensions $n \geq 10$ there are cube tilings in which no two cubes share a common ($n-1$)-face; see Lagarias and Shor [9].

In Theorem 1.1, the n-cube $[0,1]^{n}$ appears in both conditions (i) and (ii), but in functorially different contexts. The n-cube in (i) lies in the space domain \mathbb{R}^{n} while the n-cube in (ii) lies in the Fourier domain $\left(\mathbb{R}^{n}\right)^{*}$, so they transform differently under linear change of variables. Thus Theorem 1.1 is equivalent to the following result.

Received 15 June 1999. Revision received 24 August 1999.
2000 Mathematics Subject Classification. Primary 42B05; Secondary 11K70, 47A13, 52C22.
Wang partially supported by National Science Foundation grant number DMS-97-06793.

