SYMPLECTIC MODULAR SYMBOLS

PAUL E. GUNNELLS

1. Introduction

1.1. Let *G* be a semisimple algebraic group defined over \mathbb{Q} of \mathbb{Q} -rank ℓ , and let *X* be the associated symmetric space. Let $\Gamma \subset G(\mathbb{Q})$ be a torsion-free arithmetic subgroup. Then $H^*(\Gamma; \mathbb{Z}) = H^*(\Gamma \setminus X; \mathbb{Z})$, and this cohomology vanishes for * > N, where $N = \dim(X) - \ell$, the cohomological dimension of Γ .

The theory of modular symbols as formulated by Ash [2] constructs an explicit spanning set for $H^N(\Gamma; \mathbb{Z})$ as follows. Let \mathfrak{B} be the Tits building associated to *G* [17]. By the Solomon-Tits theorem, \mathfrak{B} has the homotopy type of a wedge of $(\ell - 1)$ -spheres, and thus $\tilde{H}_*(\mathfrak{B}; \mathbb{Z})$ is nonzero only in dimension $\ell - 1$. Using the Borel-Serre compactification of the locally symmetric space $\Gamma \setminus X$, we may construct a map

(1)
$$\Phi: H_{\ell-1}(\mathfrak{B}; \mathbb{Z}) \longrightarrow H^N(\Gamma; \mathbb{Z})$$

that is surjective (cf. §2). Because the left-hand side of (1) is generated by fundamental classes of apartments of \mathfrak{B} , this provides a geometric spanning set for $H^N(\Gamma)$. These cohomology classes (or rather, their duals in homology) are called *modular symbols*.

1.2. The modular symbols provide a spanning set for $H^N(\Gamma; \mathbb{Z})$, but they do not provide a finite spanning set, a distinction that is important for applications. However, suppose K/\mathbb{Q} is a number field with euclidean ring of integers \mathbb{O} , and let $G(\mathbb{Q}) = \operatorname{SL}_n(K)$ and $\Gamma \subset \operatorname{SL}_n(\mathbb{O})$. Then in [6], Ash and Rudolph determine an explicit finite spanning set—the *unimodular symbols*—and present an algorithm to write a modular symbol as a sum of unimodular symbols (cf. §2.9). This algorithm, in conjunction with certain explicit cell complexes, can be used to compute the action of the Hecke operators on $H^N(\Gamma)$. In turn, through work of Ash, Pinch, and Taylor [5], Ash and McConnell [4], and van Geemen and Top [18], corroborative evidence has been produced for certain aspects of the "Langlands philosophy." In particular, in the case of $\Gamma \subset \operatorname{SL}_3(\mathbb{Z})$, many examples of representations of the absolute Galois group Gal($\overline{\mathbb{Q}}/\mathbb{Q}$) have been found that appear to be associated to cohomology classes of Γ .

1.3. In this paper we solve the finiteness problem for the symplectic group: $G(\mathbb{Q}) = \operatorname{Sp}_{2n}(K)$ and Γ of finite index in $\operatorname{Sp}_{2n}(\mathbb{O})$, where \mathbb{O} is euclidean. We characterize a finite spanning set of $H^N(\Gamma; \mathbb{Z})$ and present an algorithm (Theorem 4.11)

329

Received 7 May 1998. Revision received 28 July 1999.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11F75.

Author's work partially supported by National Science Foundation grant number DMS-9627870.