HIGHER INTEGRABILITY FOR PARABOLIC SYSTEMS OF p-LAPLACIAN TYPE

JUHA KINNUNEN and JOHN L. LEWIS

1. Introduction. In this work, we study regularity of solutions to second-order parabolic systems:

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial t}=\operatorname{div} A_{i}(x, t, \nabla u)+B_{i}(x, t, \nabla u), \quad i=1, \ldots, N . \tag{1.1}
\end{equation*}
$$

In particular, we are interested in systems of p-Laplacian type. We present more precise structural assumptions later, but the principal prototype that we have in mind is the p-parabolic system

$$
\frac{\partial u_{i}}{\partial t}=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u_{i}\right), \quad i=1, \ldots, N
$$

with $1<p<\infty$. As usual, solutions to (1.1) are taken in a weak sense, and they are assumed to belong to a parabolic Sobolev space. A good source for the regularity theory is [D].

In the elliptic case when the system is

$$
\begin{equation*}
\operatorname{div} A_{i}(x, t, \nabla u)+B_{i}(x, t, \nabla u)=0, \quad i=1, \ldots, N \tag{1.2}
\end{equation*}
$$

it is known that solutions locally belong to a slightly higher Sobolev space than assumed a priori. This self-improving property was first observed by Elcrat and Meyers in [ME] (see also [Gi] and [Str]). Their argument is based on reverse Hölder inequalities and a modification of Gehring's lemma [Ge], which originally was developed to study the higher integrability of the Jacobian of a quasiconformal mapping. In the elliptic case, higher integrabilty results play a decisive role in studying the regularity of solutions (see [GM] and [Gi]).

The purpose of this work is to obtain higher integrablity results in the p-parabolic setting. We prove that the gradient of a weak solution to (1.1) satisfies a reverse Hölder inequality for $p>2 n /(n+2)$. The critical exponent $2 n /(n+2)$ occurs also in parabolic regularity theory (see [D]). We note that reverse Hölder inequalities and the local higher integrability for weak solutions were already proved for $p=2$ in [GS] (see also [C]). Our result appears to be new even in the scalar case if $p \neq 2$.

