DOUBLE HILBERT TRANSFORMS ALONG POLYNOMIAL SURFACES IN \mathbb{R}^{3}

ANTHONY CARBERY, STEPHEN WAINGER, AND JAMES WRIGHT

1. Introduction. In this paper we consider the L^{p}-boundedness of operators defined formally as

$$
H f(x, y, z)=\int_{|s| \leq 1} \int_{|t| \leq 1} f(x-s, y-t, z-P(s, t)) \frac{d s d t}{s t}
$$

where $P(s, t)$ is a polynomial in s and t with $P(0,0)=0$, and $\nabla P(0,0)=0$. We call H the (local) double Hilbert transform along the surface ($s, t, P(s, t)$). The operator may be precisely defined for a Schwartz function f by integrating where $\epsilon \leq|s| \leq 1$ and $\eta \leq|t| \leq 1$, and then taking the limit as $\epsilon, \eta \rightarrow 0$. The corresponding 1-parameter problem has been extensively studied (see [RS1], [RS2], and [S], for example). The type of operator that we are concerned with in this paper has been previously studied in [NW], [RS3], and [V]. In those works, operators that are in some ways more general than ours are considered, but only under an appropriate dilation invariance, which in our setting would force P to be a monomial. If $P(s, t)=s^{m} t^{n}$, then according to [RS3] (see Section 5 below for the precise statement), for any $p, 1<p<\infty, H$ is bounded in L^{p} if and only if at least one of m and n is even.

Our present result is stated in terms of the Newton diagram of P, which we describe below. Recently Phong and Stein have shown how the Newton diagram also plays a decisive role in describing the mapping properties of certain degenerate Fourier integral operators (see [PS]).

Main theorem. For any $p, 1<p<\infty$,

$$
\|H f\|_{L^{p}} \leq A_{p}\|f\|_{L^{p}}
$$

if and only if for each (m, n) that is a corner point of the Newton diagram corresponding to P, at least one of m and n is even.

Received 12 November 1998.
1991 Mathematics Subject Classification. Primary 42B20.
Carbery partially supported by Engineering and Physical Sciences Research Council grant numbers GR/78574 and GR/M03085.

Wainger partially supported by National Science Foundation grant number DMS-9731647.
Wright partially supported by an Australian Research Council grant and Engineering and Physical Sciences Research Council grant number GR/M03085.

Research at Mathematical Sciences Research Institute was partially supported by National Science Foundation grant number DMS-9701755.

