EXISTENCE AND REGULARITY FOR HIGHERDIMENSIONAL H-SYSTEMS

FRANK DUZAAR and JOSEPH F. GROTOWSKI

1. Introduction. In this paper we are concerned with the existence and regularity of solutions of the degenerate nonlinear elliptic systems known as H-systems. For a given real-valued function H defined on (a subset of) \mathbb{R}^{n+1}, the associated H-system on a subdomain of \mathbb{R}^{n} (we generally take the domain to be B, the unit ball) is given by

$$
\begin{equation*}
D_{x_{i}}\left(|D u|^{n-2} D_{x_{i}} u\right)=\sqrt{n^{n}}(H \circ u) u_{x_{1}} \times \cdots \times u_{x_{n}} \tag{1.1}
\end{equation*}
$$

for a map u from B to \mathbb{R}^{n+1}. (Obviously for (1.1) to make sense classically, we look for $u \in C^{2}\left(B, \mathbb{R}^{n+1}\right)$. As we discuss in Section 2 , it also makes sense to look for a weak solution $u \in W^{1, n}\left(B, \mathbb{R}^{n+1}\right)$ to (1.1) under suitable restrictions on H.) Here we use the summation convention, and the cross product $w_{1} \times \cdots \times w_{n}: \mathbb{R}^{n+1} \oplus \cdots \oplus$ $\mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ is defined by the property that $w \cdot w_{1} \times \cdots \times w_{n}=\operatorname{det} W$ for all vectors $w \in \mathbb{R}^{n+1}$, where W is the $(n+1) \times(n+1)$ matrix whose first row is $\left(w^{1}, \ldots, w^{n+1}\right)$ and whose j th row is $\left(w_{j-1}^{1}, \ldots, w_{j-1}^{n+1}\right)$ for $2 \leq j \leq n+1$.

Equation (1.1) has a natural geometric property; namely, if u fulfills certain additional conditions, then it represents a hypersurface in \mathbb{R}^{n+1} whose mean curvature at the point $u(x)$, for $x \in B$, is given by $H \circ u(x)$. Specifically, a map $u: B \rightarrow \mathbb{R}^{n+1}$ is called conformal if

$$
\begin{equation*}
u_{x_{i}} \cdot u_{x_{j}}=\lambda^{2}(x) \delta_{i j} \quad \text { on } B \tag{1.2}
\end{equation*}
$$

for some real-valued function λ. If $u \in C^{2}\left(B, \mathbb{R}^{3}\right)$ is conformal, then it is possible to show that u defines a hypersurface in \mathbb{R}^{n+1} which has mean curvature $H \circ u(x)$ at every regular point $u(x)$, meaning a point where $u_{x_{1}} \times \cdots \times u_{x_{n}}$ does not vanish. For $n=2$ this observation is the starting point for all existence results for parametric surfaces of prescribed mean curvature (cf. the references cited below for the Plateau problem). For $n \geq 3$ a derivation can be found in [DuF4, pp. 42 ff .].

We wish to discuss boundary value problems associated with (1.1), and we first consider the case $n=2$. Here the map u satisfies the Plateau boundary condition for a given rectifiable Jordan curve Γ in \mathbb{R}^{3} if

$$
\begin{equation*}
\left.u\right|_{\partial B} \text { is a homeomorphism from } \partial B \text { to } \Gamma . \tag{1.3}
\end{equation*}
$$

Received 2 October 1998.
1991 Mathematics Subject Classification. Primary 58E15; Secondary 35J50, 35J60, 35J70.

