SYMPLECTIC-ORTHOGONAL THETA LIFTS OF GENERIC DISCRETE SERIES

GORAN MUIĆ AND GORDAN SAVIN

0. Introduction. Let *F* be a non-Archimedean local field of characteristic zero. In this paper we study a correspondence between representations of symplectic groups Sp(n, F) and special even-orthogonal split groups SO(2r, F), where $r \ge 2$. Let $\omega_{n,r}$ be the Weil representation of Sp(2nr, F) attached to a nontrivial additive character ψ_F of *F*. We show that the correspondence arising by restricting the Weil representation $\omega_{n,r}$ to $Sp(n, F) \times SO(2r, F)$ is functorial for generic square integrable representations.

More precisely, let \mathcal{T} be a smooth, irreducible representation of $\operatorname{Sp}(n, F)$. Let $\Theta(\mathcal{T}, r)$ be the maximal \mathcal{T} -isotypic quotient of $\omega_{n,r}$. The smallest r such that $\Theta(\mathcal{T}, r) \neq 0$ is called the first occurrence index of \mathcal{T} . Now assume that \mathcal{T} is a ψ -generic discrete series. (See (1.1) for the definition of ψ .) Let $L(s, \mathcal{T})$ be the standard L-function attached to \mathcal{T} as in [Sh1]. Then we have the following results.

If $L(0, \mathcal{T}) = \infty$, then the first occurrence index is *n*. Let τ' be an irreducible quotient of $\Theta(\mathcal{T}, n)$. Then τ' is a ψ' -generic discrete series representation of SO(2*n*, *F*), and for any discrete series representation δ of GL(*m*, *F*) (*m* arbitrary), we have

$$L(s, \delta \times \mathcal{T}) = L(s, \delta) L(s, \delta \times \tau').$$

If $L(0, \mathcal{T}) \neq \infty$, then the first occurrence index is n + 1. Then $\Theta(\mathcal{T}, n + 1)$ has the unique irreducible ψ' -generic quotient τ' . Furthermore, τ' is a discrete series representation of SO(2n + 2, F), and for any discrete series representation δ of GL(m, F) (m arbitrary), we have

$$L(s, \delta \times \tau') = L(s, \delta)L(s, \delta \times \mathcal{T}).$$

We also have analogous results for ψ' -generic discrete series of SO(2*n*, *F*). We refer the reader to Section 2 for precise statements.

Our results have a conjectural interpretation as follows. Consider inclusions of dual groups

$$SO(2n, \mathbb{C}) \subset SO(2n+1, \mathbb{C}) \subset SO(2n+2, \mathbb{C}).$$

Let W'(F) be the Weil-Deligne group of *F*. The conjectural Langlands parameter of \mathcal{T} is an admissible homomorphism (see [Bo])

$$\varphi: W'(F) \longrightarrow \mathrm{SO}(2n+1, \mathbb{C}).$$

Received 22 January 1999. Revised 1 April 1999.

1991 Mathematics Subject Classification. Primary 22E35.

Authors' work partially supported by National Science Foundation grant number DMS-9970689.

317